有和没有反馈的擦除信道上的及时多进程估计:信号独立策略

Karim Banawan;Ahmed Arafa;Karim G. Seddik
{"title":"有和没有反馈的擦除信道上的及时多进程估计:信号独立策略","authors":"Karim Banawan;Ahmed Arafa;Karim G. Seddik","doi":"10.1109/JSAIT.2023.3329431","DOIUrl":null,"url":null,"abstract":"We consider a multi-process remote estimation system observing \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n independent Ornstein-Uhlenbeck processes. In this system, a shared sensor samples the \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n processes in such a way that the long-term average sum mean square error (MSE) is minimized using signal-independent sampling policies, in which sampling instances are chosen independently from the processes’ values. The sensor operates under a total sampling frequency constraint \n<inline-formula> <tex-math>$f_{\\max }$ </tex-math></inline-formula>\n. The samples from all processes consume random processing delays in a shared queue and then are transmitted over an erasure channel with probability \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n. We study two variants of the problem: first, when the samples are scheduled according to a Maximum-Age-First (MAF) policy, and the receiver provides an erasure status feedback; and second, when samples are scheduled according to a Round-Robin (RR) policy, when there is no erasure status feedback from the receiver. Aided by optimal structural results, we show that the optimal sampling policy for both settings, under some conditions, is a threshold policy. We characterize the optimal threshold and the corresponding optimal long-term average sum MSE as a function of \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$f_{\\max }$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n, and the statistical properties of the observed processes. Our results show that, with an exponentially distributed service rate, the optimal threshold \n<inline-formula> <tex-math>$\\tau ^{\\ast}$ </tex-math></inline-formula>\n increases as the number of processes \n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\n increases, for both settings. Additionally, we show that the optimal threshold is an increasing function of \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n in the case of available erasure status feedback, while it exhibits the opposite behavior, i.e., \n<inline-formula> <tex-math>$\\tau ^{\\ast}$ </tex-math></inline-formula>\n is a decreasing function of \n<inline-formula> <tex-math>$\\epsilon $ </tex-math></inline-formula>\n, in the case of absent erasure status feedback.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"4 ","pages":"607-623"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Timely Multi-Process Estimation Over Erasure Channels With and Without Feedback: Signal-Independent Policies\",\"authors\":\"Karim Banawan;Ahmed Arafa;Karim G. Seddik\",\"doi\":\"10.1109/JSAIT.2023.3329431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a multi-process remote estimation system observing \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n independent Ornstein-Uhlenbeck processes. In this system, a shared sensor samples the \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n processes in such a way that the long-term average sum mean square error (MSE) is minimized using signal-independent sampling policies, in which sampling instances are chosen independently from the processes’ values. The sensor operates under a total sampling frequency constraint \\n<inline-formula> <tex-math>$f_{\\\\max }$ </tex-math></inline-formula>\\n. The samples from all processes consume random processing delays in a shared queue and then are transmitted over an erasure channel with probability \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n. We study two variants of the problem: first, when the samples are scheduled according to a Maximum-Age-First (MAF) policy, and the receiver provides an erasure status feedback; and second, when samples are scheduled according to a Round-Robin (RR) policy, when there is no erasure status feedback from the receiver. Aided by optimal structural results, we show that the optimal sampling policy for both settings, under some conditions, is a threshold policy. We characterize the optimal threshold and the corresponding optimal long-term average sum MSE as a function of \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$f_{\\\\max }$ </tex-math></inline-formula>\\n, \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n, and the statistical properties of the observed processes. Our results show that, with an exponentially distributed service rate, the optimal threshold \\n<inline-formula> <tex-math>$\\\\tau ^{\\\\ast}$ </tex-math></inline-formula>\\n increases as the number of processes \\n<inline-formula> <tex-math>$K$ </tex-math></inline-formula>\\n increases, for both settings. Additionally, we show that the optimal threshold is an increasing function of \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n in the case of available erasure status feedback, while it exhibits the opposite behavior, i.e., \\n<inline-formula> <tex-math>$\\\\tau ^{\\\\ast}$ </tex-math></inline-formula>\\n is a decreasing function of \\n<inline-formula> <tex-math>$\\\\epsilon $ </tex-math></inline-formula>\\n, in the case of absent erasure status feedback.\",\"PeriodicalId\":73295,\"journal\":{\"name\":\"IEEE journal on selected areas in information theory\",\"volume\":\"4 \",\"pages\":\"607-623\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in information theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10304271/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10304271/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑了一个观察K个独立的Ornstein-Uhlenbeck过程的多过程远程估计系统。在该系统中,共享传感器以这样一种方式对K个过程进行采样,即使用与信号无关的采样策略最小化长期平均和均方误差(MSE),其中采样实例的选择独立于过程的值。传感器在总采样频率约束下工作。来自所有进程的采样在共享队列中消耗随机处理延迟,然后以概率通过擦除通道传输。我们研究了该问题的两种变体:第一,当样本按照最大年龄优先(maximum - age first, MAF)策略进行调度时,接收方提供擦除状态反馈;第二种情况是,当采样按RR (Round-Robin)策略调度时,当接收方没有擦除状态反馈时。在最优结构结果的帮助下,我们证明了在某些条件下,两种设置的最优抽样策略是阈值策略。我们将最佳阈值和相应的最佳长期平均和MSE描述为K, f和观察过程的统计特性的函数。结果表明,在服务率呈指数分布的情况下,对于两种设置,最优阈值τ*都随着进程数K的增加而增加。此外,我们证明了在可用的擦除状态反馈情况下,最优阈值是一个增加函数,而在没有擦除状态反馈的情况下,它表现出相反的行为,即τ*是一个减小函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Timely Multi-Process Estimation Over Erasure Channels With and Without Feedback: Signal-Independent Policies
We consider a multi-process remote estimation system observing $K$ independent Ornstein-Uhlenbeck processes. In this system, a shared sensor samples the $K$ processes in such a way that the long-term average sum mean square error (MSE) is minimized using signal-independent sampling policies, in which sampling instances are chosen independently from the processes’ values. The sensor operates under a total sampling frequency constraint $f_{\max }$ . The samples from all processes consume random processing delays in a shared queue and then are transmitted over an erasure channel with probability $\epsilon $ . We study two variants of the problem: first, when the samples are scheduled according to a Maximum-Age-First (MAF) policy, and the receiver provides an erasure status feedback; and second, when samples are scheduled according to a Round-Robin (RR) policy, when there is no erasure status feedback from the receiver. Aided by optimal structural results, we show that the optimal sampling policy for both settings, under some conditions, is a threshold policy. We characterize the optimal threshold and the corresponding optimal long-term average sum MSE as a function of $K$ , $f_{\max }$ , $\epsilon $ , and the statistical properties of the observed processes. Our results show that, with an exponentially distributed service rate, the optimal threshold $\tau ^{\ast}$ increases as the number of processes $K$ increases, for both settings. Additionally, we show that the optimal threshold is an increasing function of $\epsilon $ in the case of available erasure status feedback, while it exhibits the opposite behavior, i.e., $\tau ^{\ast}$ is a decreasing function of $\epsilon $ , in the case of absent erasure status feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信