C^*$-代数不变量的系统方法

IF 0.7 3区 数学 Q2 MATHEMATICS
Laurent Cantier
{"title":"C^*$-代数不变量的系统方法","authors":"Laurent Cantier","doi":"10.4064/sm230516-22-6","DOIUrl":null,"url":null,"abstract":"We define a categorical framework in which we build a systematic construction that provides generic invariants for $C^*$-algebras. The benefit is significant as we show that any invariant arising this way automatically enjoys nice properties such as conti","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":"174 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic approach for invariants of $C^*$-algebras\",\"authors\":\"Laurent Cantier\",\"doi\":\"10.4064/sm230516-22-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a categorical framework in which we build a systematic construction that provides generic invariants for $C^*$-algebras. The benefit is significant as we show that any invariant arising this way automatically enjoys nice properties such as conti\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/sm230516-22-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/sm230516-22-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了一个范畴框架,在这个框架中,我们构建了一个系统结构,该结构提供了$C^*$-代数的泛型不变量。这样做的好处是显著的,因为我们表明,任何以这种方式产生的不变量都会自动享有诸如conti之类的良好属性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A systematic approach for invariants of $C^*$-algebras
We define a categorical framework in which we build a systematic construction that provides generic invariants for $C^*$-algebras. The benefit is significant as we show that any invariant arising this way automatically enjoys nice properties such as conti
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信