中型变距无人机旋翼系统XFOIL性能验证

B Nielsen, M Gilpin
{"title":"中型变距无人机旋翼系统XFOIL性能验证","authors":"B Nielsen, M Gilpin","doi":"10.17159/2309-8988/2023/v39a2","DOIUrl":null,"url":null,"abstract":"This study focuses on experimentally validating the performance of XFOIL, a sophisticated software airfoil analysis tool used for approximating lift and drag coefficients. XFOIL output data was incorporated into a theoretical model simulating a variable pitch rotor system operating in a hovering state. The output of the Blade Element Momentum Theory (BEMT) rotor model is compared to thrust and power output performance data collected from a constructed rotor test bench and analysed in MATLAB. Using XFOIL as input, the BEMT rotor model was observed to yield good robust results when compared to experimental data, but demonstrated sensitivity to airfoil performance characteristics, laying the groundwork for future empirical validation. In comparing BEMT model performance, it was interesting to find that thrust performance remained within tolerance in contrast to an overprediction of rotor power output resulting from XFOIL drag at high blade pitch angles. Upon further interrogation by means of variable isolation, XFOIL demonstrated instability resulting from sensitivity to variability of model constraints. Modification of rotor geometry definitions or environmental constants beyond the test environment framework showed simulated systems may not necessarily behave reliably nor enhance output performance. This highlights the critical importance and utility of experimentation for understanding theoretical model behaviour or validating simulation output performance.","PeriodicalId":299970,"journal":{"name":"R&D Journal","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XFOIL Performance Validation for Medium-Scale Variable Pitch UAV Rotor Systems\",\"authors\":\"B Nielsen, M Gilpin\",\"doi\":\"10.17159/2309-8988/2023/v39a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on experimentally validating the performance of XFOIL, a sophisticated software airfoil analysis tool used for approximating lift and drag coefficients. XFOIL output data was incorporated into a theoretical model simulating a variable pitch rotor system operating in a hovering state. The output of the Blade Element Momentum Theory (BEMT) rotor model is compared to thrust and power output performance data collected from a constructed rotor test bench and analysed in MATLAB. Using XFOIL as input, the BEMT rotor model was observed to yield good robust results when compared to experimental data, but demonstrated sensitivity to airfoil performance characteristics, laying the groundwork for future empirical validation. In comparing BEMT model performance, it was interesting to find that thrust performance remained within tolerance in contrast to an overprediction of rotor power output resulting from XFOIL drag at high blade pitch angles. Upon further interrogation by means of variable isolation, XFOIL demonstrated instability resulting from sensitivity to variability of model constraints. Modification of rotor geometry definitions or environmental constants beyond the test environment framework showed simulated systems may not necessarily behave reliably nor enhance output performance. This highlights the critical importance and utility of experimentation for understanding theoretical model behaviour or validating simulation output performance.\",\"PeriodicalId\":299970,\"journal\":{\"name\":\"R&D Journal\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R&D Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17159/2309-8988/2023/v39a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R&D Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17159/2309-8988/2023/v39a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的重点是实验验证的性能XFOIL,一个复杂的软件翼型分析工具,用于近似升力和阻力系数。将XFOIL输出数据整合到一个理论模型中,模拟一个在悬停状态下运行的变螺距转子系统。将叶片单元动量理论(BEMT)转子模型的输出与从已构建的转子试验台收集的推力和功率输出性能数据进行了比较,并在MATLAB中进行了分析。使用XFOIL作为输入,与实验数据相比,BEMT转子模型被观察到产生良好的鲁棒性结果,但表现出对翼型性能特征的敏感性,为未来的经验验证奠定了基础。在比较BEMT模型性能时,有趣的是发现推力性能保持在公差范围内,而不是在高桨距角时由XFOIL阻力导致的转子功率输出的过度预测。在通过变量隔离手段进行进一步的询问后,XFOIL显示出由于对模型约束的可变性敏感而导致的不稳定性。修改转子几何定义或超出测试环境框架的环境常数表明,模拟系统不一定可靠地运行,也不一定提高输出性能。这突出了实验对于理解理论模型行为或验证仿真输出性能的重要性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XFOIL Performance Validation for Medium-Scale Variable Pitch UAV Rotor Systems
This study focuses on experimentally validating the performance of XFOIL, a sophisticated software airfoil analysis tool used for approximating lift and drag coefficients. XFOIL output data was incorporated into a theoretical model simulating a variable pitch rotor system operating in a hovering state. The output of the Blade Element Momentum Theory (BEMT) rotor model is compared to thrust and power output performance data collected from a constructed rotor test bench and analysed in MATLAB. Using XFOIL as input, the BEMT rotor model was observed to yield good robust results when compared to experimental data, but demonstrated sensitivity to airfoil performance characteristics, laying the groundwork for future empirical validation. In comparing BEMT model performance, it was interesting to find that thrust performance remained within tolerance in contrast to an overprediction of rotor power output resulting from XFOIL drag at high blade pitch angles. Upon further interrogation by means of variable isolation, XFOIL demonstrated instability resulting from sensitivity to variability of model constraints. Modification of rotor geometry definitions or environmental constants beyond the test environment framework showed simulated systems may not necessarily behave reliably nor enhance output performance. This highlights the critical importance and utility of experimentation for understanding theoretical model behaviour or validating simulation output performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信