区域星座重构问题:整数线性规划公式与拉格朗日启发式方法

IF 1.3 4区 工程技术 Q2 ENGINEERING, AEROSPACE
Hang Woon Lee, Koki Ho
{"title":"区域星座重构问题:整数线性规划公式与拉格朗日启发式方法","authors":"Hang Woon Lee, Koki Ho","doi":"10.2514/1.a35685","DOIUrl":null,"url":null,"abstract":"A group of satellites, with either homogeneous or heterogeneous orbital characteristics and/or hardware specifications, can undertake a reconfiguration process due to variations in operations pertaining to Earth observation missions. This paper investigates the problem of optimizing a satellite constellation reconfiguration process against two competing mission objectives: 1) the maximization of the total coverage reward, and 2) the minimization of the total cost of the transfer. The decision variables for the reconfiguration process include the design of the new configuration and the assignment of satellites from one configuration to another. We present a novel biobjective integer linear programming formulation that combines constellation design and transfer problems. The formulation lends itself to the use of generic mixed-integer linear programming (MILP) methods such as the branch-and-bound algorithm for the computation of provably optimal solutions; however, these approaches become computationally prohibitive even for moderately sized instances. In response to this challenge, this paper proposes a Lagrangian relaxation-based heuristic method that leverages the assignment problem structure embedded in the problem. The results from the computational experiments attest to the near-optimality of the Lagrangian heuristic solutions and a significant improvement in the computational runtime as compared to a commercial MILP solver.","PeriodicalId":50048,"journal":{"name":"Journal of Spacecraft and Rockets","volume":"7 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional Constellation Reconfiguration Problem: Integer Linear Programming Formulation and Lagrangian Heuristic Method\",\"authors\":\"Hang Woon Lee, Koki Ho\",\"doi\":\"10.2514/1.a35685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A group of satellites, with either homogeneous or heterogeneous orbital characteristics and/or hardware specifications, can undertake a reconfiguration process due to variations in operations pertaining to Earth observation missions. This paper investigates the problem of optimizing a satellite constellation reconfiguration process against two competing mission objectives: 1) the maximization of the total coverage reward, and 2) the minimization of the total cost of the transfer. The decision variables for the reconfiguration process include the design of the new configuration and the assignment of satellites from one configuration to another. We present a novel biobjective integer linear programming formulation that combines constellation design and transfer problems. The formulation lends itself to the use of generic mixed-integer linear programming (MILP) methods such as the branch-and-bound algorithm for the computation of provably optimal solutions; however, these approaches become computationally prohibitive even for moderately sized instances. In response to this challenge, this paper proposes a Lagrangian relaxation-based heuristic method that leverages the assignment problem structure embedded in the problem. The results from the computational experiments attest to the near-optimality of the Lagrangian heuristic solutions and a significant improvement in the computational runtime as compared to a commercial MILP solver.\",\"PeriodicalId\":50048,\"journal\":{\"name\":\"Journal of Spacecraft and Rockets\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Spacecraft and Rockets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.a35685\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Spacecraft and Rockets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.a35685","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

由于与地球观测任务有关的业务发生变化,一组轨道特征和(或)硬件规格相同或不相同的卫星可以进行重新配置过程。针对两个相互竞争的任务目标:1)总覆盖奖励最大化和2)总转移成本最小化,研究了优化卫星星座重构过程的问题。重构过程的决策变量包括新构型的设计和卫星从一种构型到另一种构型的分配。提出了一个结合星座设计和转移问题的双目标整数线性规划公式。该公式适合于使用一般的混合整数线性规划(MILP)方法,如分支定界算法来计算可证明的最优解;然而,即使对于中等大小的实例,这些方法在计算上也变得令人望而却步。针对这一挑战,本文提出了一种基于拉格朗日松弛的启发式方法,该方法利用了嵌入在问题中的分配问题结构。计算实验的结果证明了拉格朗日启发式解决方案的接近最优性,并且与商业MILP求解器相比,计算运行时有了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional Constellation Reconfiguration Problem: Integer Linear Programming Formulation and Lagrangian Heuristic Method
A group of satellites, with either homogeneous or heterogeneous orbital characteristics and/or hardware specifications, can undertake a reconfiguration process due to variations in operations pertaining to Earth observation missions. This paper investigates the problem of optimizing a satellite constellation reconfiguration process against two competing mission objectives: 1) the maximization of the total coverage reward, and 2) the minimization of the total cost of the transfer. The decision variables for the reconfiguration process include the design of the new configuration and the assignment of satellites from one configuration to another. We present a novel biobjective integer linear programming formulation that combines constellation design and transfer problems. The formulation lends itself to the use of generic mixed-integer linear programming (MILP) methods such as the branch-and-bound algorithm for the computation of provably optimal solutions; however, these approaches become computationally prohibitive even for moderately sized instances. In response to this challenge, this paper proposes a Lagrangian relaxation-based heuristic method that leverages the assignment problem structure embedded in the problem. The results from the computational experiments attest to the near-optimality of the Lagrangian heuristic solutions and a significant improvement in the computational runtime as compared to a commercial MILP solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Spacecraft and Rockets
Journal of Spacecraft and Rockets 工程技术-工程:宇航
CiteScore
3.60
自引率
18.80%
发文量
185
审稿时长
4.5 months
期刊介绍: This Journal, that started it all back in 1963, is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental result. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信