{"title":"关于涉及Janko群自同构的群[j]","authors":"Ayoub Basheer","doi":"10.22342/jims.29.2.1371.197-216","DOIUrl":null,"url":null,"abstract":"The Janko sporadic simple group J2 has an automorphism group 2. Using the electronic Atlas of Wilson [22], the group J2:2 has an absolutely irreducible module of dimension 12 over F2. It follows that a split extension group of the form 2^12:(J2:2) := G exists. In this article we study this group, where we compute its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. The inertia factor groups of G will be determined by analysing the maximal subgroups of J2:2 and maximal of the maximal subgroups of J2:2 together with various other information. It turns out that the character table of G is a 64×64 real valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 6.","PeriodicalId":42206,"journal":{"name":"Journal of the Indonesian Mathematical Society","volume":"4 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On A Group Involving The Automorphism of The Janko Group J2\",\"authors\":\"Ayoub Basheer\",\"doi\":\"10.22342/jims.29.2.1371.197-216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Janko sporadic simple group J2 has an automorphism group 2. Using the electronic Atlas of Wilson [22], the group J2:2 has an absolutely irreducible module of dimension 12 over F2. It follows that a split extension group of the form 2^12:(J2:2) := G exists. In this article we study this group, where we compute its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. The inertia factor groups of G will be determined by analysing the maximal subgroups of J2:2 and maximal of the maximal subgroups of J2:2 together with various other information. It turns out that the character table of G is a 64×64 real valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 6.\",\"PeriodicalId\":42206,\"journal\":{\"name\":\"Journal of the Indonesian Mathematical Society\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indonesian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22342/jims.29.2.1371.197-216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indonesian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22342/jims.29.2.1371.197-216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On A Group Involving The Automorphism of The Janko Group J2
The Janko sporadic simple group J2 has an automorphism group 2. Using the electronic Atlas of Wilson [22], the group J2:2 has an absolutely irreducible module of dimension 12 over F2. It follows that a split extension group of the form 2^12:(J2:2) := G exists. In this article we study this group, where we compute its conjugacy classes and character table using the coset analysis technique together with Clifford-Fischer Theory. The inertia factor groups of G will be determined by analysing the maximal subgroups of J2:2 and maximal of the maximal subgroups of J2:2 together with various other information. It turns out that the character table of G is a 64×64 real valued matrix, while the Fischer matrices are all integer valued matrices with sizes ranging from 1 to 6.