{"title":"UOV多项式系统的Hilbert级数","authors":"Yasuhiko IKEMATSU, Tsunekazu SAITO","doi":"10.1587/transfun.2023cip0019","DOIUrl":null,"url":null,"abstract":"Multivariate public key cryptosystems (MPKC) are constructed based on the problem of solving multivariate quadratic equations (MQ problem). Among various multivariate schemes, UOV is an important signature scheme since it is underlying some signature schemes such as MAYO, QR-UOV, and Rainbow which was a finalist of NIST PQC standardization project. To analyze the security of a multivariate scheme, it is necessary to analyze the first fall degree or solving degree for the system of polynomial equations used in specific attacks. It is known that the first fall degree or solving degree often relates to the Hilbert series of the ideal generated by the system. In this paper, we study the Hilbert series of the UOV scheme, and more specifically, we study the Hilbert series of ideals generated by quadratic polynomials used in the central map of UOV. In particular, we derive a prediction formula of the Hilbert series by using some experimental results. Moreover, we apply it to the analysis of the reconciliation attack for MAYO.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hilbert series for systems of UOV polynomials\",\"authors\":\"Yasuhiko IKEMATSU, Tsunekazu SAITO\",\"doi\":\"10.1587/transfun.2023cip0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate public key cryptosystems (MPKC) are constructed based on the problem of solving multivariate quadratic equations (MQ problem). Among various multivariate schemes, UOV is an important signature scheme since it is underlying some signature schemes such as MAYO, QR-UOV, and Rainbow which was a finalist of NIST PQC standardization project. To analyze the security of a multivariate scheme, it is necessary to analyze the first fall degree or solving degree for the system of polynomial equations used in specific attacks. It is known that the first fall degree or solving degree often relates to the Hilbert series of the ideal generated by the system. In this paper, we study the Hilbert series of the UOV scheme, and more specifically, we study the Hilbert series of ideals generated by quadratic polynomials used in the central map of UOV. In particular, we derive a prediction formula of the Hilbert series by using some experimental results. Moreover, we apply it to the analysis of the reconciliation attack for MAYO.\",\"PeriodicalId\":55003,\"journal\":{\"name\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/transfun.2023cip0019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2023cip0019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Multivariate public key cryptosystems (MPKC) are constructed based on the problem of solving multivariate quadratic equations (MQ problem). Among various multivariate schemes, UOV is an important signature scheme since it is underlying some signature schemes such as MAYO, QR-UOV, and Rainbow which was a finalist of NIST PQC standardization project. To analyze the security of a multivariate scheme, it is necessary to analyze the first fall degree or solving degree for the system of polynomial equations used in specific attacks. It is known that the first fall degree or solving degree often relates to the Hilbert series of the ideal generated by the system. In this paper, we study the Hilbert series of the UOV scheme, and more specifically, we study the Hilbert series of ideals generated by quadratic polynomials used in the central map of UOV. In particular, we derive a prediction formula of the Hilbert series by using some experimental results. Moreover, we apply it to the analysis of the reconciliation attack for MAYO.
期刊介绍:
Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry:
(1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments.
(2) Reports on development of measurement technology and various applied technologies.
(3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc.
(4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.