Giovani Greigh de Brito, Angela Diniz Campos, Carlos Lásaro Pereira de Melo, Paulo Fernando Bertagnoli, Elsa Kuhn Klumb, Fabiane Grecco da Silva Porto, Ariano Martins de Magalhães Jr, Paulo Ricardo Reis Fagundes, José Maria Barbat Parfitt, Giovani Theisen, Cley Donizeti Martins Nunes
{"title":"综合非光化学猝灭(NPQ)测量方法鉴定气候变化时代耐涝大豆基因型","authors":"Giovani Greigh de Brito, Angela Diniz Campos, Carlos Lásaro Pereira de Melo, Paulo Fernando Bertagnoli, Elsa Kuhn Klumb, Fabiane Grecco da Silva Porto, Ariano Martins de Magalhães Jr, Paulo Ricardo Reis Fagundes, José Maria Barbat Parfitt, Giovani Theisen, Cley Donizeti Martins Nunes","doi":"10.5539/jas.v15n10p39","DOIUrl":null,"url":null,"abstract":"Climate change has negatively affected agriculture worldwide, including soybean production. Studies have shown that rising temperatures and extreme weather events like droughts and floods significantly reduce soybean yields. Developing flood-tolerant soybean genotypes is crucial for ensuring food security. Conventional breeding programs are limited by laborious and imprecise visual rating methods for flooding tolerance identification. High-throughput platforms for plant phenotyping using imaging techniques offer potential solutions, but they lack information on underlying physiological mechanisms. Non-photochemical quenching (NPQ) is a molecular adaptation in photosynthesis that dissipates excess light energy, protecting plants from damage. This study aimed to integrate NPQ measurements into high-throughput phenotyping procedures to identify flooding-tolerant soybean genotypes. The study evaluated 160 soybean genotypes for flooding tolerance, identifying those with higher grain yield potential. Subsequently, ten genotypes were selected for monitoring NPQ responses under flooded conditions. Results showed that genotypes with higher grain yields also exhibited superior NPQ performance, suggesting a positive correlation between flooding tolerance and energy dissipation capacity. Among these genotypes, 58I60 RSF IPRO, 64HO130 I2X and BRS 525 displayed superior potential and could be further exploited in breeding efforts, considering their grain yield capacity, plant leaf area, and photoprotective capacity under flooding conditions. These findings suggest that integrating NPQ measurements into high-throughput phenotyping platforms can aid in identifying flood-tolerant soybean genotypes for breeding programs, leading to more resilient crops in the face of climate change. Further field studies are warranted to validate these hypotheses and improve crop models for future climate scenarios.","PeriodicalId":14884,"journal":{"name":"Journal of Agricultural Science","volume":"184 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Non-photochemical Quenching (NPQ) Measurements for Identifying Flood-Tolerant Soybean Genotypes in the Era of Climate Change\",\"authors\":\"Giovani Greigh de Brito, Angela Diniz Campos, Carlos Lásaro Pereira de Melo, Paulo Fernando Bertagnoli, Elsa Kuhn Klumb, Fabiane Grecco da Silva Porto, Ariano Martins de Magalhães Jr, Paulo Ricardo Reis Fagundes, José Maria Barbat Parfitt, Giovani Theisen, Cley Donizeti Martins Nunes\",\"doi\":\"10.5539/jas.v15n10p39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change has negatively affected agriculture worldwide, including soybean production. Studies have shown that rising temperatures and extreme weather events like droughts and floods significantly reduce soybean yields. Developing flood-tolerant soybean genotypes is crucial for ensuring food security. Conventional breeding programs are limited by laborious and imprecise visual rating methods for flooding tolerance identification. High-throughput platforms for plant phenotyping using imaging techniques offer potential solutions, but they lack information on underlying physiological mechanisms. Non-photochemical quenching (NPQ) is a molecular adaptation in photosynthesis that dissipates excess light energy, protecting plants from damage. This study aimed to integrate NPQ measurements into high-throughput phenotyping procedures to identify flooding-tolerant soybean genotypes. The study evaluated 160 soybean genotypes for flooding tolerance, identifying those with higher grain yield potential. Subsequently, ten genotypes were selected for monitoring NPQ responses under flooded conditions. Results showed that genotypes with higher grain yields also exhibited superior NPQ performance, suggesting a positive correlation between flooding tolerance and energy dissipation capacity. Among these genotypes, 58I60 RSF IPRO, 64HO130 I2X and BRS 525 displayed superior potential and could be further exploited in breeding efforts, considering their grain yield capacity, plant leaf area, and photoprotective capacity under flooding conditions. These findings suggest that integrating NPQ measurements into high-throughput phenotyping platforms can aid in identifying flood-tolerant soybean genotypes for breeding programs, leading to more resilient crops in the face of climate change. Further field studies are warranted to validate these hypotheses and improve crop models for future climate scenarios.\",\"PeriodicalId\":14884,\"journal\":{\"name\":\"Journal of Agricultural Science\",\"volume\":\"184 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jas.v15n10p39\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jas.v15n10p39","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrating Non-photochemical Quenching (NPQ) Measurements for Identifying Flood-Tolerant Soybean Genotypes in the Era of Climate Change
Climate change has negatively affected agriculture worldwide, including soybean production. Studies have shown that rising temperatures and extreme weather events like droughts and floods significantly reduce soybean yields. Developing flood-tolerant soybean genotypes is crucial for ensuring food security. Conventional breeding programs are limited by laborious and imprecise visual rating methods for flooding tolerance identification. High-throughput platforms for plant phenotyping using imaging techniques offer potential solutions, but they lack information on underlying physiological mechanisms. Non-photochemical quenching (NPQ) is a molecular adaptation in photosynthesis that dissipates excess light energy, protecting plants from damage. This study aimed to integrate NPQ measurements into high-throughput phenotyping procedures to identify flooding-tolerant soybean genotypes. The study evaluated 160 soybean genotypes for flooding tolerance, identifying those with higher grain yield potential. Subsequently, ten genotypes were selected for monitoring NPQ responses under flooded conditions. Results showed that genotypes with higher grain yields also exhibited superior NPQ performance, suggesting a positive correlation between flooding tolerance and energy dissipation capacity. Among these genotypes, 58I60 RSF IPRO, 64HO130 I2X and BRS 525 displayed superior potential and could be further exploited in breeding efforts, considering their grain yield capacity, plant leaf area, and photoprotective capacity under flooding conditions. These findings suggest that integrating NPQ measurements into high-throughput phenotyping platforms can aid in identifying flood-tolerant soybean genotypes for breeding programs, leading to more resilient crops in the face of climate change. Further field studies are warranted to validate these hypotheses and improve crop models for future climate scenarios.
期刊介绍:
The Journal of Agricultural Science publishes papers concerned with the advance of agriculture and the use of land resources throughout the world. It publishes original scientific work related to strategic and applied studies in all aspects of agricultural science and exploited species, as well as reviews of scientific topics of current agricultural relevance. Specific topics of interest include (but are not confined to): all aspects of crop and animal physiology, modelling of crop and animal systems, the scientific underpinning of agronomy and husbandry, animal welfare and behaviour, soil science, plant and animal product quality, plant and animal nutrition, engineering solutions, decision support systems, land use, environmental impacts of agriculture and forestry, impacts of climate change, rural biodiversity, experimental design and statistical analysis, and the application of new analytical and study methods (including genetic diversity and molecular biology approaches). The journal also publishes book reviews and letters. Occasional themed issues are published which have recently included centenary reviews, wheat papers and modelling animal systems.