有限域上高斯超几何函数的矩

IF 0.5 Q3 MATHEMATICS
Ankan Pal, Bidisha Roy, Mohammad Sadek
{"title":"有限域上高斯超几何函数的矩","authors":"Ankan Pal, Bidisha Roy, Mohammad Sadek","doi":"10.7169/facm/2088","DOIUrl":null,"url":null,"abstract":"We prove explicit formulas for certain first and second moment sums of families of Gaussian hypergeometric functions $_{n+1}F_n$, $n\\ge 1$, over finite fields with $q$ elements where $q$ is an odd prime. This enables us to find an estimate for the value $_6F_5(1)$. In addition, we evaluate certain second moments of traces of the family of Clausen elliptic curves in terms of the value $_3F_2(-1)$. These formulas also allow us to express the product of certain $_2F_1$ and $_{n+1}F_n$ functions in terms of finite field Appell series which generalizes current formulas for products of $_2F_1$ functions. We finally give closed form expressions for sums of Gaussian hypergeometric functions defined using different multiplicative characters.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moments of Gaussian hypergeometric functions over finite fields\",\"authors\":\"Ankan Pal, Bidisha Roy, Mohammad Sadek\",\"doi\":\"10.7169/facm/2088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove explicit formulas for certain first and second moment sums of families of Gaussian hypergeometric functions $_{n+1}F_n$, $n\\\\ge 1$, over finite fields with $q$ elements where $q$ is an odd prime. This enables us to find an estimate for the value $_6F_5(1)$. In addition, we evaluate certain second moments of traces of the family of Clausen elliptic curves in terms of the value $_3F_2(-1)$. These formulas also allow us to express the product of certain $_2F_1$ and $_{n+1}F_n$ functions in terms of finite field Appell series which generalizes current formulas for products of $_2F_1$ functions. We finally give closed form expressions for sums of Gaussian hypergeometric functions defined using different multiplicative characters.\",\"PeriodicalId\":44655,\"journal\":{\"name\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7169/facm/2088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在$q$元的有限域上,证明了$q$为奇素数的高斯超几何函数$_{n+1}F_n$, $n\ge 1$族的一阶和二阶矩和的显式公式。这使我们能够找到值$_6F_5(1)$的估计值。此外,我们用$_3F_2(-1)$表示了克劳森椭圆曲线族轨迹的某些二阶矩。这些公式也允许我们用有限域Appell级数来表示某些$_2F_1$和$_{n+1}F_n$函数的乘积,它推广了目前$_2F_1$函数乘积的公式。最后给出了用不同乘性定义的高斯超几何函数和的封闭表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments of Gaussian hypergeometric functions over finite fields
We prove explicit formulas for certain first and second moment sums of families of Gaussian hypergeometric functions $_{n+1}F_n$, $n\ge 1$, over finite fields with $q$ elements where $q$ is an odd prime. This enables us to find an estimate for the value $_6F_5(1)$. In addition, we evaluate certain second moments of traces of the family of Clausen elliptic curves in terms of the value $_3F_2(-1)$. These formulas also allow us to express the product of certain $_2F_1$ and $_{n+1}F_n$ functions in terms of finite field Appell series which generalizes current formulas for products of $_2F_1$ functions. We finally give closed form expressions for sums of Gaussian hypergeometric functions defined using different multiplicative characters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信