Tridendriform结构

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
Pierre Catoire
{"title":"Tridendriform结构","authors":"Pierre Catoire","doi":"10.3842/sigma.2023.066","DOIUrl":null,"url":null,"abstract":"Inspired by the work of J-L. Loday and M. Ronco, we build free tridendriform algebras over reduced trees and we show that they have a coproduct satisfying some compatibilities with the tridendriform products. Its graded dual is the opposite bialgebra of TSym introduced by N. Bergeron et al., which is described by the lightening splitting of a tree. In particular, we can split the product in three pieces and the coproduct in two pieces with Hopf compatibilities. We generate its codendriform primitives and count its coassociative primitives thanks to L. Foissy's work.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":"129 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tridendriform Structures\",\"authors\":\"Pierre Catoire\",\"doi\":\"10.3842/sigma.2023.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the work of J-L. Loday and M. Ronco, we build free tridendriform algebras over reduced trees and we show that they have a coproduct satisfying some compatibilities with the tridendriform products. Its graded dual is the opposite bialgebra of TSym introduced by N. Bergeron et al., which is described by the lightening splitting of a tree. In particular, we can split the product in three pieces and the coproduct in two pieces with Hopf compatibilities. We generate its codendriform primitives and count its coassociative primitives thanks to L. Foissy's work.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2023.066\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2023.066","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受到J-L作品的启发。Loday和M. Ronco,我们在约简树上建立了自由的三叉形代数我们证明了它们有一个与三叉形乘积相容的副积。它的梯度对偶是N. Bergeron等人引入的TSym的相反双代数,用树的闪电分裂来描述。特别地,我们可以将乘积分成三块,副乘积分成两块,并具有Hopf兼容性。由于L. Foissy的工作,我们生成了它的共树形原语并计算了它的协联想原语。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tridendriform Structures
Inspired by the work of J-L. Loday and M. Ronco, we build free tridendriform algebras over reduced trees and we show that they have a coproduct satisfying some compatibilities with the tridendriform products. Its graded dual is the opposite bialgebra of TSym introduced by N. Bergeron et al., which is described by the lightening splitting of a tree. In particular, we can split the product in three pieces and the coproduct in two pieces with Hopf compatibilities. We generate its codendriform primitives and count its coassociative primitives thanks to L. Foissy's work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信