具有四势的Liouville可积层次及其双哈密顿结构

IF 2.1 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
MA WEN-XIU
{"title":"具有四势的Liouville可积层次及其双哈密顿结构","authors":"MA WEN-XIU","doi":"10.59277/romrepphys.2023.75.115","DOIUrl":null,"url":null,"abstract":"\"We aim to construct a Liouville integrable Hamiltonian hierarchy from a specific matrix spectral problem with four potentials through the zero curvature formulation. The Liouville integrability of the resulting hierarchy is exhibited by a bi-Hamiltonian structure explored by using the trace identity. Illustrative examples of novel four-component coupled Liouville integrable nonlinear Schr¨odinger equations and modified Korteweg-de Vries equations are presented.\"","PeriodicalId":49588,"journal":{"name":"Romanian Reports in Physics","volume":"13 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure\",\"authors\":\"MA WEN-XIU\",\"doi\":\"10.59277/romrepphys.2023.75.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"We aim to construct a Liouville integrable Hamiltonian hierarchy from a specific matrix spectral problem with four potentials through the zero curvature formulation. The Liouville integrability of the resulting hierarchy is exhibited by a bi-Hamiltonian structure explored by using the trace identity. Illustrative examples of novel four-component coupled Liouville integrable nonlinear Schr¨odinger equations and modified Korteweg-de Vries equations are presented.\\\"\",\"PeriodicalId\":49588,\"journal\":{\"name\":\"Romanian Reports in Physics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Romanian Reports in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59277/romrepphys.2023.75.115\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Reports in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59277/romrepphys.2023.75.115","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

“我们的目标是通过零曲率公式从一个具有四个势的特定矩阵谱问题构造一个Liouville可积哈密顿层次。利用迹恒等式探索了一个双哈密顿结构,证明了所得层次的Liouville可积性。给出了新型四分量耦合Liouville可积非线性Schr¨odinger方程和修正Korteweg-de Vries方程的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Liouville integrable hierarchy with four potentials and its bi-Hamiltonian structure
"We aim to construct a Liouville integrable Hamiltonian hierarchy from a specific matrix spectral problem with four potentials through the zero curvature formulation. The Liouville integrability of the resulting hierarchy is exhibited by a bi-Hamiltonian structure explored by using the trace identity. Illustrative examples of novel four-component coupled Liouville integrable nonlinear Schr¨odinger equations and modified Korteweg-de Vries equations are presented."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Romanian Reports in Physics
Romanian Reports in Physics 物理-物理:综合
CiteScore
4.20
自引率
29.60%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Romanian Reports in Physics is a journal publishing physics contributions in the fields of: 1. Mathematical and General Physics 2. Nuclear Physics. Particle Physics. Astroparticle Physics 3. Atomic and Molecular Physics 4. Plasma Physics 5. Condensed Matter 6. Optics & Quantum Electronics 7. Biophysics & Medical Physics. Environmental Physics 8. Physical Methods and Instrumentation 9. Earth Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信