A. J. Warlick, G. K. Himes Boor, T. L. McGuire, K. E.W. Shelden, E. K. Jacobson, C. Boyd, P. R. Wade, A. E. Punt, S. J. Converse
{"title":"利用综合模型确定濒危顶级食肉动物种群动态和生存能力的人口和环境驱动因素","authors":"A. J. Warlick, G. K. Himes Boor, T. L. McGuire, K. E.W. Shelden, E. K. Jacobson, C. Boyd, P. R. Wade, A. E. Punt, S. J. Converse","doi":"10.1111/acv.12905","DOIUrl":null,"url":null,"abstract":"<p>Knowledge about the demographic and environmental factors underlying population dynamics is fundamental to designing effective conservation measures to recover depleted wildlife populations. However, sparse monitoring data or persistent knowledge gaps about threats make it difficult to identify the drivers of population dynamics. In situations where small, declining, or depleted populations show continued evidence of decline for unknown reasons, integrated population models can make efficient use of available data to improve our understanding of demography, provide fundamental insights into factors that may be limiting recovery, and support conservation decisions. We used mark-resight and aerial survey data from 2004 to 2018 to build a Bayesian integrated population model for the Cook Inlet population of beluga whales (<i>Delphinapterus leucas</i>), which is listed as endangered under the U.S. Endangered Species Act. We examined the effects of prey availability and oceanographic conditions on beluga vital rates and conducted a population viability analysis to predict extinction risk across a range of hypothetical changes in beluga survival and reproduction. Our results indicated that while the survival of breeding females (0.97; 95% CI: 0.95–0.99) and young calves (0.92; 0.80–0.98) was relatively high, the survival of nonbreeders (0.94; 0.91–0.97) and fecundity (0.28; 0.22–0.36) may be depressed. Furthermore, our analysis indicates that the population will likely continue to decline, with a 17–32% probability of extinction in 150 years. Our model highlights the utility of integrated population modeling for maximizing the usefulness of available data and identifying factors contributing to the failure of protected populations to recover. This framework can be used to evaluate proposed conservation and recovery efforts for this and other endangered species.</p>","PeriodicalId":50786,"journal":{"name":"Animal Conservation","volume":"27 2","pages":"240-252"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying demographic and environmental drivers of population dynamics and viability in an endangered top predator using an integrated model\",\"authors\":\"A. J. Warlick, G. K. Himes Boor, T. L. McGuire, K. E.W. Shelden, E. K. Jacobson, C. Boyd, P. R. Wade, A. E. Punt, S. J. Converse\",\"doi\":\"10.1111/acv.12905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Knowledge about the demographic and environmental factors underlying population dynamics is fundamental to designing effective conservation measures to recover depleted wildlife populations. However, sparse monitoring data or persistent knowledge gaps about threats make it difficult to identify the drivers of population dynamics. In situations where small, declining, or depleted populations show continued evidence of decline for unknown reasons, integrated population models can make efficient use of available data to improve our understanding of demography, provide fundamental insights into factors that may be limiting recovery, and support conservation decisions. We used mark-resight and aerial survey data from 2004 to 2018 to build a Bayesian integrated population model for the Cook Inlet population of beluga whales (<i>Delphinapterus leucas</i>), which is listed as endangered under the U.S. Endangered Species Act. We examined the effects of prey availability and oceanographic conditions on beluga vital rates and conducted a population viability analysis to predict extinction risk across a range of hypothetical changes in beluga survival and reproduction. Our results indicated that while the survival of breeding females (0.97; 95% CI: 0.95–0.99) and young calves (0.92; 0.80–0.98) was relatively high, the survival of nonbreeders (0.94; 0.91–0.97) and fecundity (0.28; 0.22–0.36) may be depressed. Furthermore, our analysis indicates that the population will likely continue to decline, with a 17–32% probability of extinction in 150 years. Our model highlights the utility of integrated population modeling for maximizing the usefulness of available data and identifying factors contributing to the failure of protected populations to recover. This framework can be used to evaluate proposed conservation and recovery efforts for this and other endangered species.</p>\",\"PeriodicalId\":50786,\"journal\":{\"name\":\"Animal Conservation\",\"volume\":\"27 2\",\"pages\":\"240-252\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Conservation\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acv.12905\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Conservation","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acv.12905","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Identifying demographic and environmental drivers of population dynamics and viability in an endangered top predator using an integrated model
Knowledge about the demographic and environmental factors underlying population dynamics is fundamental to designing effective conservation measures to recover depleted wildlife populations. However, sparse monitoring data or persistent knowledge gaps about threats make it difficult to identify the drivers of population dynamics. In situations where small, declining, or depleted populations show continued evidence of decline for unknown reasons, integrated population models can make efficient use of available data to improve our understanding of demography, provide fundamental insights into factors that may be limiting recovery, and support conservation decisions. We used mark-resight and aerial survey data from 2004 to 2018 to build a Bayesian integrated population model for the Cook Inlet population of beluga whales (Delphinapterus leucas), which is listed as endangered under the U.S. Endangered Species Act. We examined the effects of prey availability and oceanographic conditions on beluga vital rates and conducted a population viability analysis to predict extinction risk across a range of hypothetical changes in beluga survival and reproduction. Our results indicated that while the survival of breeding females (0.97; 95% CI: 0.95–0.99) and young calves (0.92; 0.80–0.98) was relatively high, the survival of nonbreeders (0.94; 0.91–0.97) and fecundity (0.28; 0.22–0.36) may be depressed. Furthermore, our analysis indicates that the population will likely continue to decline, with a 17–32% probability of extinction in 150 years. Our model highlights the utility of integrated population modeling for maximizing the usefulness of available data and identifying factors contributing to the failure of protected populations to recover. This framework can be used to evaluate proposed conservation and recovery efforts for this and other endangered species.
期刊介绍:
Animal Conservation provides a forum for rapid publication of novel, peer-reviewed research into the conservation of animal species and their habitats. The focus is on rigorous quantitative studies of an empirical or theoretical nature, which may relate to populations, species or communities and their conservation. We encourage the submission of single-species papers that have clear broader implications for conservation of other species or systems. A central theme is to publish important new ideas of broad interest and with findings that advance the scientific basis of conservation. Subjects covered include population biology, epidemiology, evolutionary ecology, population genetics, biodiversity, biogeography, palaeobiology and conservation economics.