Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, Lionel Renault
{"title":"基于SWOT的小中尺度过程海洋二维涡旋能量通量","authors":"Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, Lionel Renault","doi":"10.5194/os-19-1413-2023","DOIUrl":null,"url":null,"abstract":"Abstract. We investigate ocean dynamics at different scales in the Agulhas Current system, a region of important interocean exchange of heat and energy. While ocean observations and some of the most advanced climate models capture the larger mesoscale dynamics (> 100 km), the smaller-scale fronts and eddies are underrepresented. The recently launched NASA–CNES Surface Water and Ocean Topography (SWOT) wide-swath altimeter mission observes the smaller ocean geostrophic scales down to 15 km in wavelength globally. Here we will analyse different eddy diagnostics in the Agulhas Current region and quantify the contributions from the larger mesoscales observable today and the smaller scales to be observed with SWOT. Surface geostrophic diagnostics of eddy kinetic energy, strain, and energy cascades are estimated from modelled sea surface height (SSH) fields of the Massachusetts Institute of Technology general circulation model (MITgcm) latitude–longitude polar cap (LLC4320) simulation subsampled at 1/10∘. In this region, the smaller scales (<150 km) have a strong signature on the horizontal geostrophic strain rate and for all eddy diagnostics in the Western Boundary Current and along the meandering Agulhas Extension. We investigate the horizontal cascade of energy using a coarse-graining technique, and we observe that the wavelength range where the inverse cascade occurs is biased towards larger mesoscale wavelengths with today’s altimetric sampling. We also calculate the projected sampling of the eddy diagnostics under the SWOT swaths built with the NASA–CNES simulator to include the satellite position and realistic noise. For the swaths, a neural network noise mitigation method is implemented to reduce the residual SWOT random error before calculating eddy diagnostics. In terms of SSH, observable wavelengths of 15 to 20 km are retrieved after neural network noise mitigation, as opposed to wavelengths larger than 40 km before the noise reduction.","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":"60 1","pages":"0"},"PeriodicalIF":4.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ocean 2D eddy energy fluxes from small mesoscale processes with SWOT\",\"authors\":\"Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, Lionel Renault\",\"doi\":\"10.5194/os-19-1413-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We investigate ocean dynamics at different scales in the Agulhas Current system, a region of important interocean exchange of heat and energy. While ocean observations and some of the most advanced climate models capture the larger mesoscale dynamics (> 100 km), the smaller-scale fronts and eddies are underrepresented. The recently launched NASA–CNES Surface Water and Ocean Topography (SWOT) wide-swath altimeter mission observes the smaller ocean geostrophic scales down to 15 km in wavelength globally. Here we will analyse different eddy diagnostics in the Agulhas Current region and quantify the contributions from the larger mesoscales observable today and the smaller scales to be observed with SWOT. Surface geostrophic diagnostics of eddy kinetic energy, strain, and energy cascades are estimated from modelled sea surface height (SSH) fields of the Massachusetts Institute of Technology general circulation model (MITgcm) latitude–longitude polar cap (LLC4320) simulation subsampled at 1/10∘. In this region, the smaller scales (<150 km) have a strong signature on the horizontal geostrophic strain rate and for all eddy diagnostics in the Western Boundary Current and along the meandering Agulhas Extension. We investigate the horizontal cascade of energy using a coarse-graining technique, and we observe that the wavelength range where the inverse cascade occurs is biased towards larger mesoscale wavelengths with today’s altimetric sampling. We also calculate the projected sampling of the eddy diagnostics under the SWOT swaths built with the NASA–CNES simulator to include the satellite position and realistic noise. For the swaths, a neural network noise mitigation method is implemented to reduce the residual SWOT random error before calculating eddy diagnostics. In terms of SSH, observable wavelengths of 15 to 20 km are retrieved after neural network noise mitigation, as opposed to wavelengths larger than 40 km before the noise reduction.\",\"PeriodicalId\":19535,\"journal\":{\"name\":\"Ocean Science\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/os-19-1413-2023\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/os-19-1413-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Ocean 2D eddy energy fluxes from small mesoscale processes with SWOT
Abstract. We investigate ocean dynamics at different scales in the Agulhas Current system, a region of important interocean exchange of heat and energy. While ocean observations and some of the most advanced climate models capture the larger mesoscale dynamics (> 100 km), the smaller-scale fronts and eddies are underrepresented. The recently launched NASA–CNES Surface Water and Ocean Topography (SWOT) wide-swath altimeter mission observes the smaller ocean geostrophic scales down to 15 km in wavelength globally. Here we will analyse different eddy diagnostics in the Agulhas Current region and quantify the contributions from the larger mesoscales observable today and the smaller scales to be observed with SWOT. Surface geostrophic diagnostics of eddy kinetic energy, strain, and energy cascades are estimated from modelled sea surface height (SSH) fields of the Massachusetts Institute of Technology general circulation model (MITgcm) latitude–longitude polar cap (LLC4320) simulation subsampled at 1/10∘. In this region, the smaller scales (<150 km) have a strong signature on the horizontal geostrophic strain rate and for all eddy diagnostics in the Western Boundary Current and along the meandering Agulhas Extension. We investigate the horizontal cascade of energy using a coarse-graining technique, and we observe that the wavelength range where the inverse cascade occurs is biased towards larger mesoscale wavelengths with today’s altimetric sampling. We also calculate the projected sampling of the eddy diagnostics under the SWOT swaths built with the NASA–CNES simulator to include the satellite position and realistic noise. For the swaths, a neural network noise mitigation method is implemented to reduce the residual SWOT random error before calculating eddy diagnostics. In terms of SSH, observable wavelengths of 15 to 20 km are retrieved after neural network noise mitigation, as opposed to wavelengths larger than 40 km before the noise reduction.
期刊介绍:
Ocean Science (OS) is a not-for-profit international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world.
Electronic submission of articles is used to keep publication costs to a minimum. The costs will be covered by a moderate per-page charge paid by the authors. The peer-review process also makes use of the Internet. It includes an 8-week online discussion period with the original submitted manuscript and all comments. If accepted, the final revised paper will be published online.
Ocean Science covers the following fields: ocean physics (i.e. ocean structure, circulation, tides, and internal waves); ocean chemistry; biological oceanography; air–sea interactions; ocean models – physical, chemical, biological, and biochemical; coastal and shelf edge processes; paleooceanography.