最简三次域上通用二次型的提升问题

IF 0.6 4区 数学 Q3 MATHEMATICS
DANIEL GIL-MUÑOZ, MAGDALÉNA TINKOVÁ
{"title":"最简三次域上通用二次型的提升问题","authors":"DANIEL GIL-MUÑOZ, MAGDALÉNA TINKOVÁ","doi":"10.1017/s0004972723000953","DOIUrl":null,"url":null,"abstract":"Abstract The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or $\\mathbb {Z}$ -form) that is universal over K . We prove the nonexistence of universal $\\mathbb {Z}$ -forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"41 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS\",\"authors\":\"DANIEL GIL-MUÑOZ, MAGDALÉNA TINKOVÁ\",\"doi\":\"10.1017/s0004972723000953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or $\\\\mathbb {Z}$ -form) that is universal over K . We prove the nonexistence of universal $\\\\mathbb {Z}$ -forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.\",\"PeriodicalId\":50720,\"journal\":{\"name\":\"Bulletin of the Australian Mathematical Society\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Australian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0004972723000953\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723000953","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

全实数域K上的全称二次型的提升问题是确定在K上全称的整数系数二次型(或$\mathbb {Z}$ -型)是否存在。在最简单的三次域上证明了整数参数足够大的$\mathbb {Z}$ -形式的不存在性。单基因病例已经为人所知。利用极小(协差)迹等于1的全正非单位代数整数在K中的存在性证明了非单基因情况下的不存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
THE LIFTING PROBLEM FOR UNIVERSAL QUADRATIC FORMS OVER SIMPLEST CUBIC FIELDS
Abstract The lifting problem for universal quadratic forms over a totally real number field K consists of determining the existence or otherwise of a quadratic form with integer coefficients (or $\mathbb {Z}$ -form) that is universal over K . We prove the nonexistence of universal $\mathbb {Z}$ -forms over simplest cubic fields for which the integer parameter is big enough. The monogenic case is already known. We prove the nonexistence in the nonmonogenic case by using the existence of a totally positive nonunit algebraic integer in K with minimal (codifferent) trace equal to one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信