由拓扑超向量空间衍生的拓扑向量空间

Reza Ameri, M. Hamidi, A. Samadifam
{"title":"由拓扑超向量空间衍生的拓扑向量空间","authors":"Reza Ameri, M. Hamidi, A. Samadifam","doi":"10.37394/232020.2023.3.7","DOIUrl":null,"url":null,"abstract":"We introduce topological hypervector spaces on a topological field, in the sense of Tallini, and study some basic properties of this hyperspaces. In this regards we study the relationship between the topology on a hypervector spaces and its complete part. In particular we show that if every open subset of a topological hypervector space is a complete part then its fundamental vector space induced is a topological vector space. Finally, we study the quotient space of topological hypervector spaces and the derived topological space of a topological hypervector space with respect its fundamental relegation.","PeriodicalId":93382,"journal":{"name":"The international journal of evidence & proof","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Vector Spaces Derived From Topological Hypervector Spaces\",\"authors\":\"Reza Ameri, M. Hamidi, A. Samadifam\",\"doi\":\"10.37394/232020.2023.3.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce topological hypervector spaces on a topological field, in the sense of Tallini, and study some basic properties of this hyperspaces. In this regards we study the relationship between the topology on a hypervector spaces and its complete part. In particular we show that if every open subset of a topological hypervector space is a complete part then its fundamental vector space induced is a topological vector space. Finally, we study the quotient space of topological hypervector spaces and the derived topological space of a topological hypervector space with respect its fundamental relegation.\",\"PeriodicalId\":93382,\"journal\":{\"name\":\"The international journal of evidence & proof\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The international journal of evidence & proof\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232020.2023.3.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of evidence & proof","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2023.3.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在Tallini意义上,我们在拓扑域上引入了拓扑超向量空间,并研究了这种超空间的一些基本性质。在这方面,我们研究了超向量空间上的拓扑与其完备部分之间的关系。特别地,我们证明了如果拓扑超向量空间的每一个开子集都是一个完备部分,那么它的基本向量空间就是一个拓扑向量空间。最后,我们研究了拓扑超向量空间的商空间以及拓扑超向量空间的派生拓扑空间的基本降阶问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological Vector Spaces Derived From Topological Hypervector Spaces
We introduce topological hypervector spaces on a topological field, in the sense of Tallini, and study some basic properties of this hyperspaces. In this regards we study the relationship between the topology on a hypervector spaces and its complete part. In particular we show that if every open subset of a topological hypervector space is a complete part then its fundamental vector space induced is a topological vector space. Finally, we study the quotient space of topological hypervector spaces and the derived topological space of a topological hypervector space with respect its fundamental relegation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信