{"title":"关于 n 阶欧拉多项式的爱森斯坦性","authors":"Michael Filaseta , Thomas Luckner","doi":"10.1016/j.indag.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>m</mi></math></span> an even positive integer and <span><math><mi>p</mi></math></span> an odd prime, we show that the generalized Euler polynomial <span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>m</mi><mi>p</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mi>p</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is in Eisenstein form with respect to <span><math><mi>p</mi></math></span> if and only if <span><math><mi>p</mi></math></span> does not divide <span><math><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. As a consequence, we deduce that at least <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> of the generalized Euler polynomials <span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are in Eisenstein form with respect to a prime <span><math><mi>p</mi></math></span> dividing <span><math><mi>n</mi></math></span> and, hence, irreducible over <span><math><mi>Q</mi></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 76-86"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On nth order Euler polynomials of degree n that are Eisenstein\",\"authors\":\"Michael Filaseta , Thomas Luckner\",\"doi\":\"10.1016/j.indag.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mi>m</mi></math></span> an even positive integer and <span><math><mi>p</mi></math></span> an odd prime, we show that the generalized Euler polynomial <span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>m</mi><mi>p</mi></mrow><mrow><mrow><mo>(</mo><mi>m</mi><mi>p</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is in Eisenstein form with respect to <span><math><mi>p</mi></math></span> if and only if <span><math><mi>p</mi></math></span> does not divide <span><math><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>m</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>m</mi></mrow></msub></mrow></math></span>. As a consequence, we deduce that at least <span><math><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></math></span> of the generalized Euler polynomials <span><math><mrow><msubsup><mrow><mi>E</mi></mrow><mrow><mi>n</mi></mrow><mrow><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are in Eisenstein form with respect to a prime <span><math><mi>p</mi></math></span> dividing <span><math><mi>n</mi></math></span> and, hence, irreducible over <span><math><mi>Q</mi></math></span>.</p></div>\",\"PeriodicalId\":56126,\"journal\":{\"name\":\"Indagationes Mathematicae-New Series\",\"volume\":\"35 1\",\"pages\":\"Pages 76-86\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae-New Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001935772300085X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772300085X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于 m 一个偶正整数和 p 一个奇素数,我们证明广义欧拉多项式 Emp(mp)(x)相对于 p 是爱森斯坦形式,当且仅当 p 不除 m(2m-1)Bm 时。因此,我们推导出至少有 1/3 的广义欧拉多项式 En(n)(x) 相对于除以 n 的素数 p 是爱森斯坦形式,因此在 Q 上是不可约的。
On nth order Euler polynomials of degree n that are Eisenstein
For an even positive integer and an odd prime, we show that the generalized Euler polynomial is in Eisenstein form with respect to if and only if does not divide . As a consequence, we deduce that at least of the generalized Euler polynomials are in Eisenstein form with respect to a prime dividing and, hence, irreducible over .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.