Shimaa Farouk, Mahmoud El-Nokrashy, Ahmed Abd-Elhay, Nasr Saba
{"title":"基于基线长度准则的星历对定位精度的影响","authors":"Shimaa Farouk, Mahmoud El-Nokrashy, Ahmed Abd-Elhay, Nasr Saba","doi":"10.5140/jass.2023.40.3.113","DOIUrl":null,"url":null,"abstract":"Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultra-rabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600–1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.","PeriodicalId":44366,"journal":{"name":"Journal of Astronomy and Space Sciences","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Ephemeris Effect on Position Accuracy Based on Criteria Applied to Baseline Lengths by New MATLAB Program (NMP)\",\"authors\":\"Shimaa Farouk, Mahmoud El-Nokrashy, Ahmed Abd-Elhay, Nasr Saba\",\"doi\":\"10.5140/jass.2023.40.3.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultra-rabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600–1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.\",\"PeriodicalId\":44366,\"journal\":{\"name\":\"Journal of Astronomy and Space Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5140/jass.2023.40.3.113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5140/jass.2023.40.3.113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Studying the Ephemeris Effect on Position Accuracy Based on Criteria Applied to Baseline Lengths by New MATLAB Program (NMP)
Although the Relative Global Navigation Satellite System (GNSS) positioning technique provides high accuracy, it has several drawbacks. The scarcity of control points, the long baselines, and using of ultra-rabid and rabid products increased position errors. This study has designed a New MATLAB Program that helps users automatically select suitable IGS stations related to the baseline lengths and the azimuth between GNSS points and IGS stations. This study presented criteria for the length of the baselines used in Egypt and an advanced estimated accuracy before starting the project. The experimental test studies the performance of the position accuracy related to the relation between three factors: observation session, final, rabid, and ultra-rabid products, and the baseline lengths. Ground control point mediates Egypt was selected as a test point. Nine surrounding IGS stations were selected as reference stations, and the coordinates of the tested point were calculated based on them. Baselines between the tested point and the IGS stations were classified regarding proposal criteria. The coordinates of the tested point were obtained in different observation sessions (0.5, 1, 2, 4, 5, 6, 7, 7.5 h). The results indicated that the lengths of the baseline in Egypt were classified short (less than 600 km), medium (600–1,200 km), and long (greater than 1,200 km) and required a minimum observation time of 4, 5, and 7 h to obtain accuracy 10, 19, 48 mm sequentially. The position accuracy was superior for the rapid and the final than the ultra-rapid products by 16%. A short baseline was at the best case; there was a performance in position accuracy with a 57% deduction in observation time compared with the long baseline.
期刊介绍:
JASS aims for the promotion of global awareness and understanding of space science and related applications. Unlike other journals that focus either on space science or on space technologies, it intends to bridge the two communities of space science and technologies, by providing opportunities to exchange ideas and viewpoints in a single journal. Topics suitable for publication in JASS include researches in the following fields: space astronomy, solar physics, magnetospheric and ionospheric physics, cosmic ray, space weather, and planetary sciences; space instrumentation, satellite dynamics, geodesy, spacecraft control, and spacecraft navigation. However, the topics covered by JASS are not restricted to those mentioned above as the journal also encourages submission of research results in all other branches related to space science and technologies. Even though JASS was established on the heritage and achievements of the Korean space science community, it is now open to the worldwide community, while maintaining a high standard as a leading international journal. Hence, it solicits papers from the international community with a vision of global collaboration in the fields of space science and technologies.