磁地方时和高度剖面的极地中间层夏季回波特征

IF 0.6 Q4 ASTRONOMY & ASTROPHYSICS
Young-Sook Lee, Ram Singh, Geonhwa Jee, Young-Sil Kwak, Yong Ha Kim
{"title":"磁地方时和高度剖面的极地中间层夏季回波特征","authors":"Young-Sook Lee, Ram Singh, Geonhwa Jee, Young-Sil Kwak, Yong Ha Kim","doi":"10.5140/jass.2023.40.3.101","DOIUrl":null,"url":null,"abstract":"We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere–stratosphere–troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0–4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3–4 MLT for K ≥ 3. From case studies focusing on the 0–3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85–88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.","PeriodicalId":44366,"journal":{"name":"Journal of Astronomy and Space Sciences","volume":"60 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polar Mesospheric Summer Echo Characteristics in Magnetic Local Time and Height Profiles\",\"authors\":\"Young-Sook Lee, Ram Singh, Geonhwa Jee, Young-Sil Kwak, Yong Ha Kim\",\"doi\":\"10.5140/jass.2023.40.3.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere–stratosphere–troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0–4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3–4 MLT for K ≥ 3. From case studies focusing on the 0–3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85–88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.\",\"PeriodicalId\":44366,\"journal\":{\"name\":\"Journal of Astronomy and Space Sciences\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5140/jass.2023.40.3.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5140/jass.2023.40.3.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用K指数(或K)对地磁条件下极地中间层夏季回波(pmse)与磁地方时(MLT)的关系进行了统计研究。此外,我们还进行了一个案例研究,以检查速度剖面,特别是在高K指数值下随高时间分辨率变化的高速(≥100 m/s)。本研究利用位于瑞典Esrange(63.7°N, 21°E)的中流层-平流层-对流层雷达获得的PMSE数据。从PMSE出现的时间来看,从23 MLT到04 MLT, K指数的变化很大(K≥4)。近子夜时段(0 ~ 4 MLT) PMSE发生和信噪比(SNR)均呈现K≥3时上曲线、K <时下曲线的不对称结构;3.此外,当K≥3时,高速的发生在3 - 4 MLT处达到峰值。从0-3 MLT时期的案例研究中,我们观察到持续向东偏的高速(≥200米/秒)持续了约18分钟。这些高速伴随着85-88公里剖面的系统运动,包括大型切变形成。重要的是,观测到的速度的快速变化不能归因于中性风的影响。目前的研究结果表明,亚暴对PMSE有很强的影响,特别是在午夜和黎明时段。在PMSE观测到的大纬向漂移是由局地电磁场或亚暴期间电子沉降引起的全球对流场潜在激发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polar Mesospheric Summer Echo Characteristics in Magnetic Local Time and Height Profiles
We conducted a statistical study of polar mesospheric summer echoes (PMSEs) in relation to magnetic local time (MLT), considering the geomagnetic conditions using the K-index (or K). Additionally, we performed a case study to examine the velocity profile, specifically for high velocities (≥ ~100 m/s) varying with high temporal resolution at high K-index values. This study utilized the PMSE data obtained from the mesosphere–stratosphere–troposphere radar located in Esrange, Sweden (63.7°N, 21°E). The change in K-index in terms of MLT was high (K ≥ 4) from 23 to 04 MLT, estimated for the time PMSE was present. During the near-midnight period (0–4 MLT), both PMSE occurrence and signal-to-noise ratio (SNR) displayed an asymmetric structure with upper curves for K ≥ 3 and lower curves for K < 3. Furthermore, the occurrence of high velocities peaked at 3–4 MLT for K ≥ 3. From case studies focusing on the 0–3 MLT period, we observed persistent eastward-biased high velocities (≥ 200 m/s) prevailing for ~18 min. These high velocities were accompanied with the systematic motion of profiles at 85–88 km, including large shear formation. Importantly, the rapid variations observed in velocity could not be attributed to neutral wind effects. The present findings suggest a strong substorm influence on PMSE, especially in the midnight and early dawn sectors. The large zonal drift observed in PMSE were potentially energized by local electromagnetic fields or the global convection field induced by the electron precipitation during substorms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Astronomy and Space Sciences
Journal of Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
1.30
自引率
20.00%
发文量
0
审稿时长
12 weeks
期刊介绍: JASS aims for the promotion of global awareness and understanding of space science and related applications. Unlike other journals that focus either on space science or on space technologies, it intends to bridge the two communities of space science and technologies, by providing opportunities to exchange ideas and viewpoints in a single journal. Topics suitable for publication in JASS include researches in the following fields: space astronomy, solar physics, magnetospheric and ionospheric physics, cosmic ray, space weather, and planetary sciences; space instrumentation, satellite dynamics, geodesy, spacecraft control, and spacecraft navigation. However, the topics covered by JASS are not restricted to those mentioned above as the journal also encourages submission of research results in all other branches related to space science and technologies. Even though JASS was established on the heritage and achievements of the Korean space science community, it is now open to the worldwide community, while maintaining a high standard as a leading international journal. Hence, it solicits papers from the international community with a vision of global collaboration in the fields of space science and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信