人工智能作为建模和预测小城市吸引力的决策工具:来自摩洛哥的证据

Q2 Mathematics
{"title":"人工智能作为建模和预测小城市吸引力的决策工具:来自摩洛哥的证据","authors":"","doi":"10.18576/amis/170517","DOIUrl":null,"url":null,"abstract":"This study analyzes residential attractiveness in small Moroccan cities using statistical models. Net migration rates are commonly used to assess attractiveness. The study estimated net migration rates for each city and employed a structural econometric model with logistic regression to identify influential variables that affect the net migration rate. These variables were then used in a predictive model with an artificial neural network algorithm. The logistic model revealed insights, highlighting the complexity of residential attractiveness influenced by factors like job supply, accessibility, and housing conditions. The artificial neural network model provided accurate predictions (over 80%), aiding policymakers in decision-making and prospective analyses.","PeriodicalId":49266,"journal":{"name":"Applied Mathematics & Information Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Artificial Intelligence as a decision-making instrument for Modeling and Predicting Small Cities’ Attractiveness: Evidence from Morocco\",\"authors\":\"\",\"doi\":\"10.18576/amis/170517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study analyzes residential attractiveness in small Moroccan cities using statistical models. Net migration rates are commonly used to assess attractiveness. The study estimated net migration rates for each city and employed a structural econometric model with logistic regression to identify influential variables that affect the net migration rate. These variables were then used in a predictive model with an artificial neural network algorithm. The logistic model revealed insights, highlighting the complexity of residential attractiveness influenced by factors like job supply, accessibility, and housing conditions. The artificial neural network model provided accurate predictions (over 80%), aiding policymakers in decision-making and prospective analyses.\",\"PeriodicalId\":49266,\"journal\":{\"name\":\"Applied Mathematics & Information Sciences\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics & Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18576/amis/170517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics & Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18576/amis/170517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用统计模型分析了摩洛哥小城市的居住吸引力。净移民率通常用于评估吸引力。本研究估计了每个城市的净移民率,并采用结构计量模型和逻辑回归来确定影响净移民率的影响变量。然后用人工神经网络算法将这些变量用于预测模型。逻辑模型揭示了一些见解,强调了受就业供应、可达性和住房条件等因素影响的住宅吸引力的复杂性。人工神经网络模型提供了准确的预测(超过80%),帮助决策者进行决策和前瞻性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Artificial Intelligence as a decision-making instrument for Modeling and Predicting Small Cities’ Attractiveness: Evidence from Morocco
This study analyzes residential attractiveness in small Moroccan cities using statistical models. Net migration rates are commonly used to assess attractiveness. The study estimated net migration rates for each city and employed a structural econometric model with logistic regression to identify influential variables that affect the net migration rate. These variables were then used in a predictive model with an artificial neural network algorithm. The logistic model revealed insights, highlighting the complexity of residential attractiveness influenced by factors like job supply, accessibility, and housing conditions. The artificial neural network model provided accurate predictions (over 80%), aiding policymakers in decision-making and prospective analyses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics & Information Sciences
Applied Mathematics & Information Sciences Mathematics-Numerical Analysis
CiteScore
2.10
自引率
0.00%
发文量
85
审稿时长
5.3 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信