Robin Ströbel, Yannik Probst, Samuel Deucker, Jürgen Fleischer
{"title":"基于混合机器学习模型的数控轴能耗时间序列预测","authors":"Robin Ströbel, Yannik Probst, Samuel Deucker, Jürgen Fleischer","doi":"10.3390/machines11111015","DOIUrl":null,"url":null,"abstract":"The prediction of energy-related time series for computer numerical control (CNC) machine tool axes is an essential enabler for the shift towards autonomous and intelligent production. In particular, a precise prediction of energy consumption is needed to determine the environmental impact of a product and the optimization of its production. For this purpose, a novel approach for predicting high-frequency time series of numerically controlled axes based on the program code to be executed is presented. The method involves simulative preprocessing of the input NC code to determine each axis’s acceleration, velocity, and process force. Combined with the material removal rate, these variables are input for a machine learning (ML) model that delivers axis-specific high-frequency time series predictions. Compared to common approaches, it is thus possible to make predictions for the variable energy consumption of machine tools for any tool path or target resolution in the time domain. Experiments show that this approach achieves a high precision when a robust learning data basis is available. For the X-, Y-, and Z-axis, errors of 0.2%, −1.09%, and 0.09% for aircut and of 0.15%, −3.55%, and 0.08% for material removal can be achieved. The potentials for further improvement are identified systematically.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"19 1‐2","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Series Prediction for Energy Consumption of Computer Numerical Control Axes Using Hybrid Machine Learning Models\",\"authors\":\"Robin Ströbel, Yannik Probst, Samuel Deucker, Jürgen Fleischer\",\"doi\":\"10.3390/machines11111015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of energy-related time series for computer numerical control (CNC) machine tool axes is an essential enabler for the shift towards autonomous and intelligent production. In particular, a precise prediction of energy consumption is needed to determine the environmental impact of a product and the optimization of its production. For this purpose, a novel approach for predicting high-frequency time series of numerically controlled axes based on the program code to be executed is presented. The method involves simulative preprocessing of the input NC code to determine each axis’s acceleration, velocity, and process force. Combined with the material removal rate, these variables are input for a machine learning (ML) model that delivers axis-specific high-frequency time series predictions. Compared to common approaches, it is thus possible to make predictions for the variable energy consumption of machine tools for any tool path or target resolution in the time domain. Experiments show that this approach achieves a high precision when a robust learning data basis is available. For the X-, Y-, and Z-axis, errors of 0.2%, −1.09%, and 0.09% for aircut and of 0.15%, −3.55%, and 0.08% for material removal can be achieved. The potentials for further improvement are identified systematically.\",\"PeriodicalId\":48519,\"journal\":{\"name\":\"Machines\",\"volume\":\"19 1‐2\",\"pages\":\"0\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/machines11111015\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/machines11111015","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Time Series Prediction for Energy Consumption of Computer Numerical Control Axes Using Hybrid Machine Learning Models
The prediction of energy-related time series for computer numerical control (CNC) machine tool axes is an essential enabler for the shift towards autonomous and intelligent production. In particular, a precise prediction of energy consumption is needed to determine the environmental impact of a product and the optimization of its production. For this purpose, a novel approach for predicting high-frequency time series of numerically controlled axes based on the program code to be executed is presented. The method involves simulative preprocessing of the input NC code to determine each axis’s acceleration, velocity, and process force. Combined with the material removal rate, these variables are input for a machine learning (ML) model that delivers axis-specific high-frequency time series predictions. Compared to common approaches, it is thus possible to make predictions for the variable energy consumption of machine tools for any tool path or target resolution in the time domain. Experiments show that this approach achieves a high precision when a robust learning data basis is available. For the X-, Y-, and Z-axis, errors of 0.2%, −1.09%, and 0.09% for aircut and of 0.15%, −3.55%, and 0.08% for material removal can be achieved. The potentials for further improvement are identified systematically.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.