{"title":"从球体填充到傅里叶插值","authors":"Henry Cohn","doi":"10.1090/bull/1813","DOIUrl":null,"url":null,"abstract":"Viazovska’s solution of the sphere packing problem in eight dimensions is based on a remarkable construction of certain special functions using modular forms. Great mathematics has consequences far beyond the problems that originally inspired it, and Viazovska’s work is no exception. In this article, we’ll examine how it has led to new interpolation theorems in Fourier analysis, specifically a theorem of Radchenko and Viazovska.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From sphere packing to Fourier interpolation\",\"authors\":\"Henry Cohn\",\"doi\":\"10.1090/bull/1813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viazovska’s solution of the sphere packing problem in eight dimensions is based on a remarkable construction of certain special functions using modular forms. Great mathematics has consequences far beyond the problems that originally inspired it, and Viazovska’s work is no exception. In this article, we’ll examine how it has led to new interpolation theorems in Fourier analysis, specifically a theorem of Radchenko and Viazovska.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1813\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Viazovska’s solution of the sphere packing problem in eight dimensions is based on a remarkable construction of certain special functions using modular forms. Great mathematics has consequences far beyond the problems that originally inspired it, and Viazovska’s work is no exception. In this article, we’ll examine how it has led to new interpolation theorems in Fourier analysis, specifically a theorem of Radchenko and Viazovska.