机器学习:

IF 0.5 Q4 BUSINESS
Emerson Martins, Napoleao Verardi Galegale
{"title":"机器学习:","authors":"Emerson Martins, Napoleao Verardi Galegale","doi":"10.5585/2023.24056","DOIUrl":null,"url":null,"abstract":"Objetivo: Apresentar uma visão dos artigos científicos publicados nos últimos dez anos sobre o tema aprendizado de máquina, do inglês machine learning (ML), com ênfase nos algoritmos preditivos. Método/abordagem: Análise bibliométrica, com apoio do protocolo PRISMA, para avaliar autores, universidades e países, quanto a produtividade, citações bibliográficas e focos sobre o tema, com amostra de 773 artigos das bases de dados Scopus e Web of Science, no período de 2013 a maio/2023. Originalidade/valor: Há ausência de estudos na literatura que consolidem artigos relacionados a ML e Big Data. A pesquisa contribui para cobrir tal lacuna, favorecendo o delineamento de ações e pesquisas futuras. Principais resultados: Foram identificados no corpus bibliométrico de ML: autores mais citados e com maior número de publicações, países e universidades mais produtivas, periódicos com maior número de publicações e citações, áreas de conhecimento com maior número de publicações e artigos de maior prestígio. Nos temas e domínios de ML, foram identificados: principais coocorrências de palavras-chaves, temas emergentes (agrupados em cinco clusters) e nuvem de palavras por título e por resumo. Os estudos sobre impacto da aquisição de dados e análise preditiva representam oportunidades para pesquisas futuras. Contribuições teóricas/metodológicas: O protocolo PRISMA possibilitou a identificação e análises quantitativa e qualitativa relevantes dos artigos, consolidando o conhecimento científico sobre o tema. Contribuições sociais/gerenciais: Facilidade de compreender a maturidade das pesquisas sobre ML e Big Data por parte de gestores de empresas e pesquisadores, quanto à viabilidade de investimentos para se obter vantagens competitivas com tais tecnologias.","PeriodicalId":43121,"journal":{"name":"International Journal of Innovation","volume":"59 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning:\",\"authors\":\"Emerson Martins, Napoleao Verardi Galegale\",\"doi\":\"10.5585/2023.24056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objetivo: Apresentar uma visão dos artigos científicos publicados nos últimos dez anos sobre o tema aprendizado de máquina, do inglês machine learning (ML), com ênfase nos algoritmos preditivos. Método/abordagem: Análise bibliométrica, com apoio do protocolo PRISMA, para avaliar autores, universidades e países, quanto a produtividade, citações bibliográficas e focos sobre o tema, com amostra de 773 artigos das bases de dados Scopus e Web of Science, no período de 2013 a maio/2023. Originalidade/valor: Há ausência de estudos na literatura que consolidem artigos relacionados a ML e Big Data. A pesquisa contribui para cobrir tal lacuna, favorecendo o delineamento de ações e pesquisas futuras. Principais resultados: Foram identificados no corpus bibliométrico de ML: autores mais citados e com maior número de publicações, países e universidades mais produtivas, periódicos com maior número de publicações e citações, áreas de conhecimento com maior número de publicações e artigos de maior prestígio. Nos temas e domínios de ML, foram identificados: principais coocorrências de palavras-chaves, temas emergentes (agrupados em cinco clusters) e nuvem de palavras por título e por resumo. Os estudos sobre impacto da aquisição de dados e análise preditiva representam oportunidades para pesquisas futuras. Contribuições teóricas/metodológicas: O protocolo PRISMA possibilitou a identificação e análises quantitativa e qualitativa relevantes dos artigos, consolidando o conhecimento científico sobre o tema. Contribuições sociais/gerenciais: Facilidade de compreender a maturidade das pesquisas sobre ML e Big Data por parte de gestores de empresas e pesquisadores, quanto à viabilidade de investimentos para se obter vantagens competitivas com tais tecnologias.\",\"PeriodicalId\":43121,\"journal\":{\"name\":\"International Journal of Innovation\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5585/2023.24056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5585/2023.24056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

目的:概述近十年来发表的关于机器学习主题的科学文章,重点是预测算法。方法/方法:文献计量分析,在PRISMA协议的支持下,评估作者、大学和国家的生产力、文献引用和主题焦点,样本773篇文章来自Scopus和Web of Science数据库,从2013年到2023年5月。原创性/价值:文献中缺乏整合ML和大数据相关文章的研究。这项研究有助于填补这一空白,有利于行动和未来研究的设计。主要结果:在ML的文献计量语料库中确定:被引用最多的作者和出版物数量最多,最多产的国家和大学,出版物和被引用数量最多的期刊,出版物数量最多的知识领域和最负盛名的文章。在ML主题和领域中,确定了关键字的主要共现性、新兴主题(分为5个集群)和按标题和摘要的词云。数据采集和预测分析的影响研究为未来的研究提供了机会。理论/方法贡献:PRISMA方案允许对相关文章进行定量和定性的识别和分析,巩固了关于该主题的科学知识。社会/管理贡献:企业经理和研究人员很容易理解ML和大数据研究的成熟度,以及利用这些技术获得竞争优势的投资可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning:
Objetivo: Apresentar uma visão dos artigos científicos publicados nos últimos dez anos sobre o tema aprendizado de máquina, do inglês machine learning (ML), com ênfase nos algoritmos preditivos. Método/abordagem: Análise bibliométrica, com apoio do protocolo PRISMA, para avaliar autores, universidades e países, quanto a produtividade, citações bibliográficas e focos sobre o tema, com amostra de 773 artigos das bases de dados Scopus e Web of Science, no período de 2013 a maio/2023. Originalidade/valor: Há ausência de estudos na literatura que consolidem artigos relacionados a ML e Big Data. A pesquisa contribui para cobrir tal lacuna, favorecendo o delineamento de ações e pesquisas futuras. Principais resultados: Foram identificados no corpus bibliométrico de ML: autores mais citados e com maior número de publicações, países e universidades mais produtivas, periódicos com maior número de publicações e citações, áreas de conhecimento com maior número de publicações e artigos de maior prestígio. Nos temas e domínios de ML, foram identificados: principais coocorrências de palavras-chaves, temas emergentes (agrupados em cinco clusters) e nuvem de palavras por título e por resumo. Os estudos sobre impacto da aquisição de dados e análise preditiva representam oportunidades para pesquisas futuras. Contribuições teóricas/metodológicas: O protocolo PRISMA possibilitou a identificação e análises quantitativa e qualitativa relevantes dos artigos, consolidando o conhecimento científico sobre o tema. Contribuições sociais/gerenciais: Facilidade de compreender a maturidade das pesquisas sobre ML e Big Data por parte de gestores de empresas e pesquisadores, quanto à viabilidade de investimentos para se obter vantagens competitivas com tais tecnologias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信