{"title":"同源配位群的综述","authors":"Oğuz Şavk","doi":"10.1090/bull/1806","DOIUrl":null,"url":null,"abstract":"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Q Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.","PeriodicalId":9513,"journal":{"name":"Bulletin of the American Mathematical Society","volume":"105 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of the homology cobordism group\",\"authors\":\"Oğuz Şavk\",\"doi\":\"10.1090/bull/1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Z Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Q Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Z Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.\",\"PeriodicalId\":9513,\"journal\":{\"name\":\"Bulletin of the American Mathematical Society\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1806\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1806","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology 33-spheres and the structure of ΘZ3\Theta _{\mathbb {Z}}^3. Finally, we briefly discuss the knot concordance group C\mathcal {C} and the rational homology cobordism group ΘQ3\Theta _{\mathbb {Q}}^3, focusing on their algebraic structures, relating them to ΘZ3\Theta _{\mathbb {Z}}^3, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology 33-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.
期刊介绍:
The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.