{"title":"同源配位群的综述","authors":"Oğuz Şavk","doi":"10.1090/bull/1806","DOIUrl":null,"url":null,"abstract":"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Q Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of the homology cobordism group\",\"authors\":\"Oğuz Şavk\",\"doi\":\"10.1090/bull/1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Z Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Q Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Z Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology 33-spheres and the structure of ΘZ3\Theta _{\mathbb {Z}}^3. Finally, we briefly discuss the knot concordance group C\mathcal {C} and the rational homology cobordism group ΘQ3\Theta _{\mathbb {Q}}^3, focusing on their algebraic structures, relating them to ΘZ3\Theta _{\mathbb {Z}}^3, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology 33-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.