同源配位群的综述

IF 2 3区 数学 Q1 MATHEMATICS
Oğuz Şavk
{"title":"同源配位群的综述","authors":"Oğuz Şavk","doi":"10.1090/bull/1806","DOIUrl":null,"url":null,"abstract":"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C\"> <mml:semantics> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Q Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Theta Subscript double-struck upper Z Superscript 3\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\"normal\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\"application/x-tex\">\\Theta _{\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\"application/x-tex\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.","PeriodicalId":9513,"journal":{"name":"Bulletin of the American Mathematical Society","volume":"105 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A survey of the homology cobordism group\",\"authors\":\"Oğuz Şavk\",\"doi\":\"10.1090/bull/1806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres and the structure of <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Z Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, we briefly discuss the knot concordance group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"script upper C\\\"> <mml:semantics> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">C</mml:mi> </mml:mrow> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathcal {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the rational homology cobordism group <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Q Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Q}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their algebraic structures, relating them to <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"normal upper Theta Subscript double-struck upper Z Superscript 3\\\"> <mml:semantics> <mml:msubsup> <mml:mi mathvariant=\\\"normal\\\">Θ<!-- Θ --></mml:mi> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mn>3</mml:mn> </mml:msubsup> <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Theta _{\\\\mathbb {Z}}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology <inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"3\\\"> <mml:semantics> <mml:mn>3</mml:mn> <mml:annotation encoding=\\\"application/x-tex\\\">3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.\",\"PeriodicalId\":9513,\"journal\":{\"name\":\"Bulletin of the American Mathematical Society\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bull/1806\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bull/1806","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这个调查中,我们提出了最近的亮点,从研究的同调配群,特别强调其长期和丰富的历史,在光滑流形的背景下。进一步,我们列出了关于它的代数结构的各种结果,并讨论了它在低维拓扑发展中的重要作用。此外,我们还讨论了一系列关于同调33 -球的行为和Θ z3 \Theta _{\mathbb {Z}}^3结构的开放问题。最后,我们简要讨论了结谐和群C \mathcal {C}和有理同调群Θ Q 3 \Theta _{\mathbb {Q}}^3,重点讨论了它们的代数结构,并将它们与Θ Z 3 \Theta _{\mathbb {Z}}^3联系起来,突出了几个开放问题。附录是由Brieskorn, Dehn, Gordon, Seifert, Siebenmann和Waldhausen介绍的几个同构33球的构造和表示的汇编。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey of the homology cobordism group
In this survey, we present the most recent highlights from the study of the homology cobordism group, with particular emphasis on its long-standing and rich history in the context of smooth manifolds. Further, we list various results on its algebraic structure and discuss its crucial role in the development of low-dimensional topology. Also, we share a series of open problems about the behavior of homology 3 3 -spheres and the structure of Θ Z 3 \Theta _{\mathbb {Z}}^3 . Finally, we briefly discuss the knot concordance group C \mathcal {C} and the rational homology cobordism group Θ Q 3 \Theta _{\mathbb {Q}}^3 , focusing on their algebraic structures, relating them to Θ Z 3 \Theta _{\mathbb {Z}}^3 , and highlighting several open problems. The appendix is a compilation of several constructions and presentations of homology 3 3 -spheres introduced by Brieskorn, Dehn, Gordon, Seifert, Siebenmann, and Waldhausen.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The Bulletin publishes expository articles on contemporary mathematical research, written in a way that gives insight to mathematicians who may not be experts in the particular topic. The Bulletin also publishes reviews of selected books in mathematics and short articles in the Mathematical Perspectives section, both by invitation only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信