关于循环图的度量维数

Pub Date : 2023-09-28 DOI:10.4153/s0008439523000759
Rui Gao, Yingqing Xiao, Zhanqi Zhang
{"title":"关于循环图的度量维数","authors":"Rui Gao, Yingqing Xiao, Zhanqi Zhang","doi":"10.4153/s0008439523000759","DOIUrl":null,"url":null,"abstract":"Abstract In this note, we bound the metric dimension of the circulant graphs $C_n(1,2,\\ldots ,t)$ . We shall prove that if $n=2tk+t$ and if t is odd, then $\\dim (C_n(1,2,\\ldots ,t))=t+1$ , which confirms Conjecture 4.1.1 in Chau and Gosselin (2017, Opuscula Mathematica 37, 509–534). In Vetrík (2017, Canadian Mathematical Bulletin 60, 206–216; 2020, Discussiones Mathematicae. Graph Theory 40, 67–76), the author has shown that $\\dim (C_n(1,2,\\ldots ,t))\\leq t+\\left \\lceil \\frac {p}{2}\\right \\rceil $ for $n=2tk+t+p$ , where $t\\geq 4$ is even, $1\\leq p\\leq t+1$ , and $k\\geq 1$ . Inspired by his work, we show that $\\dim (C_n(1,2,\\ldots ,t))\\leq t+\\left \\lfloor \\frac {p}{2}\\right \\rfloor $ for $n=2tk+t+p$ , where $t\\geq 5$ is odd, $2\\leq p\\leq t+1$ , and $k\\geq 2$ .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Metric Dimension of Circulant Graphs\",\"authors\":\"Rui Gao, Yingqing Xiao, Zhanqi Zhang\",\"doi\":\"10.4153/s0008439523000759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this note, we bound the metric dimension of the circulant graphs $C_n(1,2,\\\\ldots ,t)$ . We shall prove that if $n=2tk+t$ and if t is odd, then $\\\\dim (C_n(1,2,\\\\ldots ,t))=t+1$ , which confirms Conjecture 4.1.1 in Chau and Gosselin (2017, Opuscula Mathematica 37, 509–534). In Vetrík (2017, Canadian Mathematical Bulletin 60, 206–216; 2020, Discussiones Mathematicae. Graph Theory 40, 67–76), the author has shown that $\\\\dim (C_n(1,2,\\\\ldots ,t))\\\\leq t+\\\\left \\\\lceil \\\\frac {p}{2}\\\\right \\\\rceil $ for $n=2tk+t+p$ , where $t\\\\geq 4$ is even, $1\\\\leq p\\\\leq t+1$ , and $k\\\\geq 1$ . Inspired by his work, we show that $\\\\dim (C_n(1,2,\\\\ldots ,t))\\\\leq t+\\\\left \\\\lfloor \\\\frac {p}{2}\\\\right \\\\rfloor $ for $n=2tk+t+p$ , where $t\\\\geq 5$ is odd, $2\\\\leq p\\\\leq t+1$ , and $k\\\\geq 2$ .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008439523000759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008439523000759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文对循环图$C_n(1,2,\ldots ,t)$的度量维数进行了定界。我们将证明,如果$n=2tk+t$和如果t是奇数,则$\dim (C_n(1,2,\ldots ,t))=t+1$,这证实了Chau和Gosselin (2017, Mathematica 37, 509-534)的猜想4.1.1。见Vetrík(2017,加拿大数学通报60,206-216;2020,《数学讨论》。图论40,67-76),作者已经证明$\dim (C_n(1,2,\ldots ,t))\leq t+\left \lceil \frac {p}{2}\right \rceil $对于$n=2tk+t+p$,其中$t\geq 4$是偶数,$1\leq p\leq t+1$,和$k\geq 1$。受他的工作启发,我们展示了$\dim (C_n(1,2,\ldots ,t))\leq t+\left \lfloor \frac {p}{2}\right \rfloor $代表$n=2tk+t+p$,其中$t\geq 5$是奇数,$2\leq p\leq t+1$和$k\geq 2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Metric Dimension of Circulant Graphs
Abstract In this note, we bound the metric dimension of the circulant graphs $C_n(1,2,\ldots ,t)$ . We shall prove that if $n=2tk+t$ and if t is odd, then $\dim (C_n(1,2,\ldots ,t))=t+1$ , which confirms Conjecture 4.1.1 in Chau and Gosselin (2017, Opuscula Mathematica 37, 509–534). In Vetrík (2017, Canadian Mathematical Bulletin 60, 206–216; 2020, Discussiones Mathematicae. Graph Theory 40, 67–76), the author has shown that $\dim (C_n(1,2,\ldots ,t))\leq t+\left \lceil \frac {p}{2}\right \rceil $ for $n=2tk+t+p$ , where $t\geq 4$ is even, $1\leq p\leq t+1$ , and $k\geq 1$ . Inspired by his work, we show that $\dim (C_n(1,2,\ldots ,t))\leq t+\left \lfloor \frac {p}{2}\right \rfloor $ for $n=2tk+t+p$ , where $t\geq 5$ is odd, $2\leq p\leq t+1$ , and $k\geq 2$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信