基于光滑Dirichlet分布的稀疏多项数据贝叶斯推断及其在COVID-19数据中的应用

Q4 Mathematics
Lahiru Wickramasinghe, Alexandre Leblanc, Saman Muthukumarana
{"title":"基于光滑Dirichlet分布的稀疏多项数据贝叶斯推断及其在COVID-19数据中的应用","authors":"Lahiru Wickramasinghe, Alexandre Leblanc, Saman Muthukumarana","doi":"10.3233/mas-221411","DOIUrl":null,"url":null,"abstract":"We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian inference on sparse multinomial data using smoothed Dirichlet distribution with an application to COVID-19 data\",\"authors\":\"Lahiru Wickramasinghe, Alexandre Leblanc, Saman Muthukumarana\",\"doi\":\"10.3233/mas-221411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-221411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-221411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一种贝叶斯方法来估计多项细胞概率使用平滑的狄利克雷先验。平滑狄利克雷先验最重要的特征是,它迫使相邻单元的概率比在标准狄利克雷先验下更接近彼此。我们提出了一个使用贝叶斯方法来估计多项细胞概率的收缩型估计器。所提出的估计器允许我们同时借用其他多项种群和细胞类别的信息来改进细胞概率的估计,特别是在有序类别的稀疏性背景下。我们使用COVID-19数据验证了所提出的方法,并估计了加拿大卫生地区各年龄组COVID-19阳性病例的分布。我们的方法允许在很少观察到病例的较小卫生区域改进估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference on sparse multinomial data using smoothed Dirichlet distribution with an application to COVID-19 data
We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信