Xia Sun, Dominikus Heinzeller, Ligia Bernardet, Linlin Pan, Weiwei Li, David Turner, John Brown
{"title":"全球预报系统夏季低CAPE行为的个案研究","authors":"Xia Sun, Dominikus Heinzeller, Ligia Bernardet, Linlin Pan, Weiwei Li, David Turner, John Brown","doi":"10.1175/waf-d-22-0208.1","DOIUrl":null,"url":null,"abstract":"Abstract Convective available potential energy (CAPE) is an important index for storm forecasting. Recent versions (v15.2 and v16) of the Global Forecast System (GFS) predict lower values of CAPE during summertime in the continental U.S. than analysis and observation. We conducted an evaluation of the GFS in simulating summertime CAPE using an example from the Unified Forecast System Case Study collection to investigate the factors that lead to the low CAPE bias in GFS. Specifically, we investigated the surface energy budget, soil properties, and near-surface and upper-level meteorological fields. Results show that the GFS simulates smaller surface latent heat flux and larger surface sensible heat flux than the observations. This can be attributed to the slightly drier-than-observed soil moisture in the GFS which comes from an offline global land data assimilation system. The lower simulated CAPE in GFS v16 is related to the early drop of surface net radiation with excessive boundary layer cloud after midday compared with GFS v15.2. A moisture-budget analysis indicates that errors in the large-scale advection of water vapor does not contribute to the dry bias in the GFS at low levels. Common Community Physics Package single-column model (SCM) experiments suggest that with realistic initial vertical profiles, SCM simulations generate a larger CAPE than runs with GFS IC. SCM runs with an active LSM tend to produce smaller CAPE than that with prescribed surface fluxes. Note that the findings are only applicable to this case study. Including more warm-season cases would enhance the generalizability of our findings.","PeriodicalId":49369,"journal":{"name":"Weather and Forecasting","volume":"73 S7","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study Investigating the Low Summertime CAPE Behavior in the Global Forecast System\",\"authors\":\"Xia Sun, Dominikus Heinzeller, Ligia Bernardet, Linlin Pan, Weiwei Li, David Turner, John Brown\",\"doi\":\"10.1175/waf-d-22-0208.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Convective available potential energy (CAPE) is an important index for storm forecasting. Recent versions (v15.2 and v16) of the Global Forecast System (GFS) predict lower values of CAPE during summertime in the continental U.S. than analysis and observation. We conducted an evaluation of the GFS in simulating summertime CAPE using an example from the Unified Forecast System Case Study collection to investigate the factors that lead to the low CAPE bias in GFS. Specifically, we investigated the surface energy budget, soil properties, and near-surface and upper-level meteorological fields. Results show that the GFS simulates smaller surface latent heat flux and larger surface sensible heat flux than the observations. This can be attributed to the slightly drier-than-observed soil moisture in the GFS which comes from an offline global land data assimilation system. The lower simulated CAPE in GFS v16 is related to the early drop of surface net radiation with excessive boundary layer cloud after midday compared with GFS v15.2. A moisture-budget analysis indicates that errors in the large-scale advection of water vapor does not contribute to the dry bias in the GFS at low levels. Common Community Physics Package single-column model (SCM) experiments suggest that with realistic initial vertical profiles, SCM simulations generate a larger CAPE than runs with GFS IC. SCM runs with an active LSM tend to produce smaller CAPE than that with prescribed surface fluxes. Note that the findings are only applicable to this case study. Including more warm-season cases would enhance the generalizability of our findings.\",\"PeriodicalId\":49369,\"journal\":{\"name\":\"Weather and Forecasting\",\"volume\":\"73 S7\",\"pages\":\"0\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Forecasting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1175/waf-d-22-0208.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Forecasting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/waf-d-22-0208.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
摘要对流有效势能(CAPE)是风暴预报的重要指标。全球预报系统(GFS)的最新版本(v15.2和v16)预测美国大陆夏季的CAPE值低于分析和观测值。我们利用统一预报系统案例研究收集的一个例子,对GFS模拟夏季CAPE进行了评估,以探讨导致GFS低CAPE偏差的因素。具体而言,我们研究了地表能量收支、土壤性质以及近地表和高层气象场。结果表明,GFS模拟的地表潜热通量较小,地表感热通量较大。这可归因于来自离线全球土地数据同化系统的GFS中土壤湿度比观测到的略干。GFS v16中较低的模拟CAPE与中午后边界层云过多的地表净辐射较GFS v15.2提前下降有关。水分收支分析表明,大尺度水汽平流的误差不会导致低空GFS的干偏。Common Community Physics Package单列模型(SCM)实验表明,在真实的初始垂直剖面下,SCM模拟产生的CAPE比使用GFS IC模拟产生的CAPE大,而使用主动LSM的SCM模拟产生的CAPE往往比使用规定表面通量的SCM模拟产生的CAPE小。请注意,这些发现仅适用于本案例研究。包括更多温暖季节的病例将增强我们研究结果的普遍性。
A Case Study Investigating the Low Summertime CAPE Behavior in the Global Forecast System
Abstract Convective available potential energy (CAPE) is an important index for storm forecasting. Recent versions (v15.2 and v16) of the Global Forecast System (GFS) predict lower values of CAPE during summertime in the continental U.S. than analysis and observation. We conducted an evaluation of the GFS in simulating summertime CAPE using an example from the Unified Forecast System Case Study collection to investigate the factors that lead to the low CAPE bias in GFS. Specifically, we investigated the surface energy budget, soil properties, and near-surface and upper-level meteorological fields. Results show that the GFS simulates smaller surface latent heat flux and larger surface sensible heat flux than the observations. This can be attributed to the slightly drier-than-observed soil moisture in the GFS which comes from an offline global land data assimilation system. The lower simulated CAPE in GFS v16 is related to the early drop of surface net radiation with excessive boundary layer cloud after midday compared with GFS v15.2. A moisture-budget analysis indicates that errors in the large-scale advection of water vapor does not contribute to the dry bias in the GFS at low levels. Common Community Physics Package single-column model (SCM) experiments suggest that with realistic initial vertical profiles, SCM simulations generate a larger CAPE than runs with GFS IC. SCM runs with an active LSM tend to produce smaller CAPE than that with prescribed surface fluxes. Note that the findings are only applicable to this case study. Including more warm-season cases would enhance the generalizability of our findings.
期刊介绍:
Weather and Forecasting (WAF) (ISSN: 0882-8156; eISSN: 1520-0434) publishes research that is relevant to operational forecasting. This includes papers on significant weather events, forecasting techniques, forecast verification, model parameterizations, data assimilation, model ensembles, statistical postprocessing techniques, the transfer of research results to the forecasting community, and the societal use and value of forecasts. The scope of WAF includes research relevant to forecast lead times ranging from short-term “nowcasts” through seasonal time scales out to approximately two years.