Manan A. Maisuria, Priti V. Tandel, Trushitkumar Patel
{"title":"非均质多孔介质二维溶质输运模型的分数阶简化微分变换解法","authors":"Manan A. Maisuria, Priti V. Tandel, Trushitkumar Patel","doi":"10.3390/axioms12111039","DOIUrl":null,"url":null,"abstract":"This study contains a two-dimensional mathematical model of solute transport in a river with temporally and spatially dependent flow, explicitly focusing on pulse-type input point sources with a fractional approach. This model is analyzed by assuming an initial concentration function as a declining exponential function in both the longitudinal and transverse directions. The governing equation is a time-fractional two-dimensional advection–dispersion equation with a variable form of dispersion coefficients, velocities, decay constant of the first order, production rate coefficient for the solute at the zero-order level, and retardation factor. The solution of the present problem is obtained by the fractional reduced differential transform method (FRDTM). The analysis of the initial retardation factor has been carried out via plots. Also, the influence of initial longitudinal and transverse dispersion coefficients and velocities has been examined by graphical analysis. The impact of fractional parameters on pollution levels is also analyzed numerically and graphically. The study of convergence for the FRDTM technique has been conducted to assess its efficacy and accuracy.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"61 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of Two-Dimensional Solute Transport Model for Heterogeneous Porous Medium Using Fractional Reduced Differential Transform Method\",\"authors\":\"Manan A. Maisuria, Priti V. Tandel, Trushitkumar Patel\",\"doi\":\"10.3390/axioms12111039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study contains a two-dimensional mathematical model of solute transport in a river with temporally and spatially dependent flow, explicitly focusing on pulse-type input point sources with a fractional approach. This model is analyzed by assuming an initial concentration function as a declining exponential function in both the longitudinal and transverse directions. The governing equation is a time-fractional two-dimensional advection–dispersion equation with a variable form of dispersion coefficients, velocities, decay constant of the first order, production rate coefficient for the solute at the zero-order level, and retardation factor. The solution of the present problem is obtained by the fractional reduced differential transform method (FRDTM). The analysis of the initial retardation factor has been carried out via plots. Also, the influence of initial longitudinal and transverse dispersion coefficients and velocities has been examined by graphical analysis. The impact of fractional parameters on pollution levels is also analyzed numerically and graphically. The study of convergence for the FRDTM technique has been conducted to assess its efficacy and accuracy.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12111039\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111039","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Solution of Two-Dimensional Solute Transport Model for Heterogeneous Porous Medium Using Fractional Reduced Differential Transform Method
This study contains a two-dimensional mathematical model of solute transport in a river with temporally and spatially dependent flow, explicitly focusing on pulse-type input point sources with a fractional approach. This model is analyzed by assuming an initial concentration function as a declining exponential function in both the longitudinal and transverse directions. The governing equation is a time-fractional two-dimensional advection–dispersion equation with a variable form of dispersion coefficients, velocities, decay constant of the first order, production rate coefficient for the solute at the zero-order level, and retardation factor. The solution of the present problem is obtained by the fractional reduced differential transform method (FRDTM). The analysis of the initial retardation factor has been carried out via plots. Also, the influence of initial longitudinal and transverse dispersion coefficients and velocities has been examined by graphical analysis. The impact of fractional parameters on pollution levels is also analyzed numerically and graphically. The study of convergence for the FRDTM technique has been conducted to assess its efficacy and accuracy.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.