{"title":"基于回波状态网络的添加剂搅拌摩擦沉积非线性温度控制研究","authors":"Glen Merritt, Christian Cousin, Hwan-Sik Yoon","doi":"10.1115/1.4064000","DOIUrl":null,"url":null,"abstract":"Abstract Additive friction stir deposition is a recent innovation in additive manufacturing allowing the deposition of metallic alloys onto a metallic deposit bed, creating a purely mechanical metallic bond. The deposition can be done in a layer-by-layer manner, and the purely mechanical process eliminates the need for high energy consumption and can be deposited at a much higher rate than beam-based welding. The mechanical nature of the process allows the bonding of dissimilar alloys and a reduction in size of the heat affected zone. The additive friction stir deposition process is difficult to model and existing literature has focused on numerical analysis, which is not amenable to online closed-loop control. In this work, a form of reservoir computing called an echo state network is used to model the additive friction stir deposition process from online process data, and validation is performed on a reserved data set. Subsequently, a model free controller using Lyapunov-derived combination of the robust integral of the sign error, and a single hidden layer neural network design is developed to control the additive friction stir deposition process. Control efficacy is given by way of a Lyapunov analysis which shows the system is globally exponentially stable, and simulation results with the echo state networks. Stability proof shows that under one assumption, the controller can be extrapolated to the real system. The mean squared error of the tracking result using the controller and echo state network simulation is 2.05 degrees Celsius.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"64 2","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network\",\"authors\":\"Glen Merritt, Christian Cousin, Hwan-Sik Yoon\",\"doi\":\"10.1115/1.4064000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Additive friction stir deposition is a recent innovation in additive manufacturing allowing the deposition of metallic alloys onto a metallic deposit bed, creating a purely mechanical metallic bond. The deposition can be done in a layer-by-layer manner, and the purely mechanical process eliminates the need for high energy consumption and can be deposited at a much higher rate than beam-based welding. The mechanical nature of the process allows the bonding of dissimilar alloys and a reduction in size of the heat affected zone. The additive friction stir deposition process is difficult to model and existing literature has focused on numerical analysis, which is not amenable to online closed-loop control. In this work, a form of reservoir computing called an echo state network is used to model the additive friction stir deposition process from online process data, and validation is performed on a reserved data set. Subsequently, a model free controller using Lyapunov-derived combination of the robust integral of the sign error, and a single hidden layer neural network design is developed to control the additive friction stir deposition process. Control efficacy is given by way of a Lyapunov analysis which shows the system is globally exponentially stable, and simulation results with the echo state networks. Stability proof shows that under one assumption, the controller can be extrapolated to the real system. The mean squared error of the tracking result using the controller and echo state network simulation is 2.05 degrees Celsius.\",\"PeriodicalId\":54846,\"journal\":{\"name\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"volume\":\"64 2\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064000\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network
Abstract Additive friction stir deposition is a recent innovation in additive manufacturing allowing the deposition of metallic alloys onto a metallic deposit bed, creating a purely mechanical metallic bond. The deposition can be done in a layer-by-layer manner, and the purely mechanical process eliminates the need for high energy consumption and can be deposited at a much higher rate than beam-based welding. The mechanical nature of the process allows the bonding of dissimilar alloys and a reduction in size of the heat affected zone. The additive friction stir deposition process is difficult to model and existing literature has focused on numerical analysis, which is not amenable to online closed-loop control. In this work, a form of reservoir computing called an echo state network is used to model the additive friction stir deposition process from online process data, and validation is performed on a reserved data set. Subsequently, a model free controller using Lyapunov-derived combination of the robust integral of the sign error, and a single hidden layer neural network design is developed to control the additive friction stir deposition process. Control efficacy is given by way of a Lyapunov analysis which shows the system is globally exponentially stable, and simulation results with the echo state networks. Stability proof shows that under one assumption, the controller can be extrapolated to the real system. The mean squared error of the tracking result using the controller and echo state network simulation is 2.05 degrees Celsius.
期刊介绍:
The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.