具有rabotnov分数阶指数核的一般分数阶积分的新型chebyshev型不等式

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
LU-LU GENG, XIAO-JUN YANG
{"title":"具有rabotnov分数阶指数核的一般分数阶积分的新型chebyshev型不等式","authors":"LU-LU GENG, XIAO-JUN YANG","doi":"10.1142/s0218348x23501268","DOIUrl":null,"url":null,"abstract":"In this paper, we first propose two Chebyshev-type inequalities associated with the general fractional-order (Yang–Abdel–Aty–Cattani) integrals with the Rabotnov fractional-exponential kernel under the condition that [Formula: see text] and [Formula: see text] are synchronous functions. What is more, by the mathematical induction, we prove a new Chebyshev-type inequality in the case that [Formula: see text] be [Formula: see text] positive increasing functions. Finally, we introduce a novel Chebyshev-type inequality via the general fractional-order integrals with the Rabotnov fractional-exponential kernel under the condition that [Formula: see text] and [Formula: see text] are monotonic functions.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NOVEL CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERAL FRACTIONAL-ORDER INTEGRALS WITH THE RABOTNOV FRACTIONAL EXPONENTIAL KERNEL\",\"authors\":\"LU-LU GENG, XIAO-JUN YANG\",\"doi\":\"10.1142/s0218348x23501268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first propose two Chebyshev-type inequalities associated with the general fractional-order (Yang–Abdel–Aty–Cattani) integrals with the Rabotnov fractional-exponential kernel under the condition that [Formula: see text] and [Formula: see text] are synchronous functions. What is more, by the mathematical induction, we prove a new Chebyshev-type inequality in the case that [Formula: see text] be [Formula: see text] positive increasing functions. Finally, we introduce a novel Chebyshev-type inequality via the general fractional-order integrals with the Rabotnov fractional-exponential kernel under the condition that [Formula: see text] and [Formula: see text] are monotonic functions.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x23501268\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23501268","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文首先在[公式:见文]和[公式:见文]为同步函数的条件下,提出了两个与一般分数阶(yang - abdel - ati - cattani)积分与Rabotnov分数阶-指数核相关的chebyshev型不等式。并利用数学归纳法,证明了[公式:见文]是[公式:见文]正递增函数时的一个新的切比雪夫不等式。最后,在[公式:见文]和[公式:见文]为单调函数的条件下,利用Rabotnov分数指数核的一般分数阶积分,引入了一个新的chebyshev型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NOVEL CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERAL FRACTIONAL-ORDER INTEGRALS WITH THE RABOTNOV FRACTIONAL EXPONENTIAL KERNEL
In this paper, we first propose two Chebyshev-type inequalities associated with the general fractional-order (Yang–Abdel–Aty–Cattani) integrals with the Rabotnov fractional-exponential kernel under the condition that [Formula: see text] and [Formula: see text] are synchronous functions. What is more, by the mathematical induction, we prove a new Chebyshev-type inequality in the case that [Formula: see text] be [Formula: see text] positive increasing functions. Finally, we introduce a novel Chebyshev-type inequality via the general fractional-order integrals with the Rabotnov fractional-exponential kernel under the condition that [Formula: see text] and [Formula: see text] are monotonic functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信