S. Pérez-Díaz, M.A. Fernández de Sevilla, J.R. Magdalena-Benedicto
{"title":"参数代数曲面的渐近性质","authors":"S. Pérez-Díaz, M.A. Fernández de Sevilla, J.R. Magdalena-Benedicto","doi":"10.37256/cm.4420232693","DOIUrl":null,"url":null,"abstract":"Starting from the concept of infinite branches and approximation surfaces, we present a method to compute infinite branches and surfaces having the same asymptotic behavior as an input parametric surface. The results obtained in this work represent a breakthrough for the study of surfaces and their applications.","PeriodicalId":29767,"journal":{"name":"Contemporary Mathematics","volume":" 111","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Behavior of a Parametric Algebraic Surface\",\"authors\":\"S. Pérez-Díaz, M.A. Fernández de Sevilla, J.R. Magdalena-Benedicto\",\"doi\":\"10.37256/cm.4420232693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from the concept of infinite branches and approximation surfaces, we present a method to compute infinite branches and surfaces having the same asymptotic behavior as an input parametric surface. The results obtained in this work represent a breakthrough for the study of surfaces and their applications.\",\"PeriodicalId\":29767,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":\" 111\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.4420232693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.4420232693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Asymptotic Behavior of a Parametric Algebraic Surface
Starting from the concept of infinite branches and approximation surfaces, we present a method to compute infinite branches and surfaces having the same asymptotic behavior as an input parametric surface. The results obtained in this work represent a breakthrough for the study of surfaces and their applications.