Geir Bogfjellmo, Elena Celledoni, Robert McLachlan, Brynjulf Owren, G. Quispel
{"title":"在Kahan的方法中使用香味来搜索保留的度量和积分","authors":"Geir Bogfjellmo, Elena Celledoni, Robert McLachlan, Brynjulf Owren, G. Quispel","doi":"10.1090/mcom/3921","DOIUrl":null,"url":null,"abstract":"The numerical method of Kahan applied to quadratic differential equations is known to often generate integrable maps in low dimensions and can in more general situations exhibit preserved measures and integrals. Computerized methods based on discrete Darboux polynomials have recently been used for finding these measures and integrals. However, if the differential system contains many parameters, this approach can lead to highly complex results that can be difficult to interpret and analyse. But this complexity can in some cases be substantially reduced by using aromatic series. These are a mathematical tool introduced independently by Chartier and Murua and by Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive some necessary conditions for the Kahan map to have preserved measures and integrals expressible in terms of aromatic functions. An important reason for the success of this method lies in the equivariance of the map from vector fields to their aromatic functions. We demonstrate the algorithm on a number of examples showing a great reduction in complexity compared to what had been obtained by a fixed basis such as monomials.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using aromas to search for preserved measures and integrals in Kahan’s method\",\"authors\":\"Geir Bogfjellmo, Elena Celledoni, Robert McLachlan, Brynjulf Owren, G. Quispel\",\"doi\":\"10.1090/mcom/3921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical method of Kahan applied to quadratic differential equations is known to often generate integrable maps in low dimensions and can in more general situations exhibit preserved measures and integrals. Computerized methods based on discrete Darboux polynomials have recently been used for finding these measures and integrals. However, if the differential system contains many parameters, this approach can lead to highly complex results that can be difficult to interpret and analyse. But this complexity can in some cases be substantially reduced by using aromatic series. These are a mathematical tool introduced independently by Chartier and Murua and by Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive some necessary conditions for the Kahan map to have preserved measures and integrals expressible in terms of aromatic functions. An important reason for the success of this method lies in the equivariance of the map from vector fields to their aromatic functions. We demonstrate the algorithm on a number of examples showing a great reduction in complexity compared to what had been obtained by a fixed basis such as monomials.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Using aromas to search for preserved measures and integrals in Kahan’s method
The numerical method of Kahan applied to quadratic differential equations is known to often generate integrable maps in low dimensions and can in more general situations exhibit preserved measures and integrals. Computerized methods based on discrete Darboux polynomials have recently been used for finding these measures and integrals. However, if the differential system contains many parameters, this approach can lead to highly complex results that can be difficult to interpret and analyse. But this complexity can in some cases be substantially reduced by using aromatic series. These are a mathematical tool introduced independently by Chartier and Murua and by Iserles, Quispel and Tse. We develop an algorithm for this purpose and derive some necessary conditions for the Kahan map to have preserved measures and integrals expressible in terms of aromatic functions. An important reason for the success of this method lies in the equivariance of the map from vector fields to their aromatic functions. We demonstrate the algorithm on a number of examples showing a great reduction in complexity compared to what had been obtained by a fixed basis such as monomials.