基于非线性非均质性的等温线模型在黏土和花岗岩上铌吸附特性的应用

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY
Kerntechnik Pub Date : 2023-11-08 DOI:10.1515/kern-2023-0059
Shih-Chin Tsai, Pei-Tung Hsueh, Kuan-Ying Hsieh, Hui-Min Chiu, Chuan-Pin Lee
{"title":"基于非线性非均质性的等温线模型在黏土和花岗岩上铌吸附特性的应用","authors":"Shih-Chin Tsai, Pei-Tung Hsueh, Kuan-Ying Hsieh, Hui-Min Chiu, Chuan-Pin Lee","doi":"10.1515/kern-2023-0059","DOIUrl":null,"url":null,"abstract":"Abstract The nonlinear heterogeneous adsorption behaviors of niobium (Nb) on clay rocks (bentonite and argillite) and granite in synthetic groundwater and seawater systems were evaluated by adsorption experiments, applying two heterogeneity-based isotherm models: the Langmuir–Freundlich (LF) and generalized-Freundlich (GF) models. According to the root mean square error (RMSE) between the experimental results and numerical simulation, the two heterogeneous sorption models (LF and GF), which correspond to a different heterogenous constant ( β ), were more adequate than Langmuir models for characterizing the Nb adsorption mechanism. The fitting results demonstrated that the sorption of Nb on granite, bentonite, and argillite exhibited a different adsorption affinity spectrum as a result of the heterogeneous mineral surface. Consequently, the Nb sorption capacity of bentonite and argillite was higher than that of granite and was estimated at 9.24E-01 mmol/g for bentonite, 8.44E-01 mmol/g for argillite, and 2.33E-02 mol/kg for granite.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":" 74","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite\",\"authors\":\"Shih-Chin Tsai, Pei-Tung Hsueh, Kuan-Ying Hsieh, Hui-Min Chiu, Chuan-Pin Lee\",\"doi\":\"10.1515/kern-2023-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The nonlinear heterogeneous adsorption behaviors of niobium (Nb) on clay rocks (bentonite and argillite) and granite in synthetic groundwater and seawater systems were evaluated by adsorption experiments, applying two heterogeneity-based isotherm models: the Langmuir–Freundlich (LF) and generalized-Freundlich (GF) models. According to the root mean square error (RMSE) between the experimental results and numerical simulation, the two heterogeneous sorption models (LF and GF), which correspond to a different heterogenous constant ( β ), were more adequate than Langmuir models for characterizing the Nb adsorption mechanism. The fitting results demonstrated that the sorption of Nb on granite, bentonite, and argillite exhibited a different adsorption affinity spectrum as a result of the heterogeneous mineral surface. Consequently, the Nb sorption capacity of bentonite and argillite was higher than that of granite and was estimated at 9.24E-01 mmol/g for bentonite, 8.44E-01 mmol/g for argillite, and 2.33E-02 mol/kg for granite.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\" 74\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2023-0059\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/kern-2023-0059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用Langmuir-Freundlich (LF)和generalized-Freundlich (GF)两种基于非均质性的等温线模型,通过吸附实验研究了铌(Nb)在合成地下水和海水体系中黏土岩(膨润土和泥质岩)和花岗岩上的非线性非均质吸附行为。从实验结果与数值模拟的均方根误差(RMSE)来看,对应不同的非均相常数(β)的两种非均相吸附模型(LF和GF)比Langmuir模型更适合表征Nb的吸附机理。拟合结果表明,花岗岩、膨润土和泥质岩对铌的吸附表现出不同的吸附亲和谱。膨润土和泥质岩对铌的吸附量均高于花岗岩,膨润土的吸附量为9.24E-01 mmol/g,泥质岩的吸附量为8.44E-01 mmol/g,花岗岩为2.33E-02 mol/kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite
Abstract The nonlinear heterogeneous adsorption behaviors of niobium (Nb) on clay rocks (bentonite and argillite) and granite in synthetic groundwater and seawater systems were evaluated by adsorption experiments, applying two heterogeneity-based isotherm models: the Langmuir–Freundlich (LF) and generalized-Freundlich (GF) models. According to the root mean square error (RMSE) between the experimental results and numerical simulation, the two heterogeneous sorption models (LF and GF), which correspond to a different heterogenous constant ( β ), were more adequate than Langmuir models for characterizing the Nb adsorption mechanism. The fitting results demonstrated that the sorption of Nb on granite, bentonite, and argillite exhibited a different adsorption affinity spectrum as a result of the heterogeneous mineral surface. Consequently, the Nb sorption capacity of bentonite and argillite was higher than that of granite and was estimated at 9.24E-01 mmol/g for bentonite, 8.44E-01 mmol/g for argillite, and 2.33E-02 mol/kg for granite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kerntechnik
Kerntechnik 工程技术-核科学技术
CiteScore
0.90
自引率
20.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信