Shih-Chin Tsai, Pei-Tung Hsueh, Kuan-Ying Hsieh, Hui-Min Chiu, Chuan-Pin Lee
{"title":"基于非线性非均质性的等温线模型在黏土和花岗岩上铌吸附特性的应用","authors":"Shih-Chin Tsai, Pei-Tung Hsueh, Kuan-Ying Hsieh, Hui-Min Chiu, Chuan-Pin Lee","doi":"10.1515/kern-2023-0059","DOIUrl":null,"url":null,"abstract":"Abstract The nonlinear heterogeneous adsorption behaviors of niobium (Nb) on clay rocks (bentonite and argillite) and granite in synthetic groundwater and seawater systems were evaluated by adsorption experiments, applying two heterogeneity-based isotherm models: the Langmuir–Freundlich (LF) and generalized-Freundlich (GF) models. According to the root mean square error (RMSE) between the experimental results and numerical simulation, the two heterogeneous sorption models (LF and GF), which correspond to a different heterogenous constant ( β ), were more adequate than Langmuir models for characterizing the Nb adsorption mechanism. The fitting results demonstrated that the sorption of Nb on granite, bentonite, and argillite exhibited a different adsorption affinity spectrum as a result of the heterogeneous mineral surface. Consequently, the Nb sorption capacity of bentonite and argillite was higher than that of granite and was estimated at 9.24E-01 mmol/g for bentonite, 8.44E-01 mmol/g for argillite, and 2.33E-02 mol/kg for granite.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":" 74","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite\",\"authors\":\"Shih-Chin Tsai, Pei-Tung Hsueh, Kuan-Ying Hsieh, Hui-Min Chiu, Chuan-Pin Lee\",\"doi\":\"10.1515/kern-2023-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The nonlinear heterogeneous adsorption behaviors of niobium (Nb) on clay rocks (bentonite and argillite) and granite in synthetic groundwater and seawater systems were evaluated by adsorption experiments, applying two heterogeneity-based isotherm models: the Langmuir–Freundlich (LF) and generalized-Freundlich (GF) models. According to the root mean square error (RMSE) between the experimental results and numerical simulation, the two heterogeneous sorption models (LF and GF), which correspond to a different heterogenous constant ( β ), were more adequate than Langmuir models for characterizing the Nb adsorption mechanism. The fitting results demonstrated that the sorption of Nb on granite, bentonite, and argillite exhibited a different adsorption affinity spectrum as a result of the heterogeneous mineral surface. Consequently, the Nb sorption capacity of bentonite and argillite was higher than that of granite and was estimated at 9.24E-01 mmol/g for bentonite, 8.44E-01 mmol/g for argillite, and 2.33E-02 mol/kg for granite.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\" 74\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2023-0059\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/kern-2023-0059","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
An application for nonlinear heterogeneity-based isotherm models in characterization of niobium sorption on clay rocks and granite
Abstract The nonlinear heterogeneous adsorption behaviors of niobium (Nb) on clay rocks (bentonite and argillite) and granite in synthetic groundwater and seawater systems were evaluated by adsorption experiments, applying two heterogeneity-based isotherm models: the Langmuir–Freundlich (LF) and generalized-Freundlich (GF) models. According to the root mean square error (RMSE) between the experimental results and numerical simulation, the two heterogeneous sorption models (LF and GF), which correspond to a different heterogenous constant ( β ), were more adequate than Langmuir models for characterizing the Nb adsorption mechanism. The fitting results demonstrated that the sorption of Nb on granite, bentonite, and argillite exhibited a different adsorption affinity spectrum as a result of the heterogeneous mineral surface. Consequently, the Nb sorption capacity of bentonite and argillite was higher than that of granite and was estimated at 9.24E-01 mmol/g for bentonite, 8.44E-01 mmol/g for argillite, and 2.33E-02 mol/kg for granite.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).