计算Riemann-Roch多项式和分类hyper-Kähler四倍

IF 3.5 1区 数学 Q1 MATHEMATICS
Olivier Debarre, Daniel Huybrechts, Emanuele Macrì, Claire Voisin
{"title":"计算Riemann-Roch多项式和分类hyper-Kähler四倍","authors":"Olivier Debarre, Daniel Huybrechts, Emanuele Macrì, Claire Voisin","doi":"10.1090/jams/1016","DOIUrl":null,"url":null,"abstract":"We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> numerical type are of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"52 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds\",\"authors\":\"Olivier Debarre, Daniel Huybrechts, Emanuele Macrì, Claire Voisin\",\"doi\":\"10.1090/jams/1016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> numerical type are of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1016\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们证明了满足温和拓扑假设的hyper-Kähler四重体是K3[2] ^{[2]}变形类型。这特别证明了O 'Grady的一个猜想,即hyper-Kähler四倍的K3[2] ^{[2]}数值型是K3[2] ^{[2]}变形型。我们的拓扑假设涉及两个满足一定数值交条件的2次整上同调类的存在性。证明中有两个主要成分。我们首先证明了该命题的拓扑版本,通过证明我们的拓扑假设迫使hyper-Kähler四次多项式的Betti数、Fujiki常数和Huybrechts-Riemann-Roch多项式与K3 [2] ^{[2]} hyper-Kähler四次多项式相同。然后,本文的关键部分是证明hyper-Kähler四倍因子类满足上述数值条件的hyper-Kähler SYZ猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds
We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3 [ 2 ] ^{[2]} deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3 [ 2 ] ^{[2]} numerical type are of K3 [ 2 ] ^{[2]} deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3 [ 2 ] ^{[2]} hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信