Olivier Debarre, Daniel Huybrechts, Emanuele Macrì, Claire Voisin
{"title":"计算Riemann-Roch多项式和分类hyper-Kähler四倍","authors":"Olivier Debarre, Daniel Huybrechts, Emanuele Macrì, Claire Voisin","doi":"10.1090/jams/1016","DOIUrl":null,"url":null,"abstract":"We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> numerical type are of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"Superscript left-bracket 2 right-bracket\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.","PeriodicalId":54764,"journal":{"name":"Journal of the American Mathematical Society","volume":"52 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds\",\"authors\":\"Olivier Debarre, Daniel Huybrechts, Emanuele Macrì, Claire Voisin\",\"doi\":\"10.1090/jams/1016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> numerical type are of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3<inline-formula content-type=\\\"math/mathml\\\"> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"Superscript left-bracket 2 right-bracket\\\"> <mml:semantics> <mml:msup> <mml:mi /> <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\"> <mml:mo stretchy=\\\"false\\\">[</mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\\\"false\\\">]</mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=\\\"application/x-tex\\\">^{[2]}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.\",\"PeriodicalId\":54764,\"journal\":{\"name\":\"Journal of the American Mathematical Society\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/jams/1016\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/jams/1016","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Computing Riemann–Roch polynomials and classifying hyper-Kähler fourfolds
We prove that a hyper-Kähler fourfold satisfying a mild topological assumption is of K3[2]^{[2]} deformation type. This proves in particular a conjecture of O’Grady stating that hyper-Kähler fourfolds of K3[2]^{[2]} numerical type are of K3[2]^{[2]} deformation type. Our topological assumption concerns the existence of two integral degree-2 cohomology classes satisfying certain numerical intersection conditions. There are two main ingredients in the proof. We first prove a topological version of the statement, by showing that our topological assumption forces the Betti numbers, the Fujiki constant, and the Huybrechts–Riemann–Roch polynomial of the hyper-Kähler fourfold to be the same as those of K3[2]^{[2]} hyper-Kähler fourfolds. The key part of the article is then to prove the hyper-Kähler SYZ conjecture for hyper-Kähler fourfolds for divisor classes satisfying the numerical condition mentioned above.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in all areas of pure and applied mathematics.