扭曲群环和噪声线性元胞自动机的稳定有限性

IF 0.6 3区 数学 Q3 MATHEMATICS
Xuan Kien Phung
{"title":"扭曲群环和噪声线性元胞自动机的稳定有限性","authors":"Xuan Kien Phung","doi":"10.4153/s0008414x23000329","DOIUrl":null,"url":null,"abstract":"Abstract For linear nonuniform cellular automata (NUCA) which are local perturbations of linear CA over a group universe G and a finite-dimensional vector space alphabet V over an arbitrary field k , we investigate their Dedekind finiteness property, also known as the direct finiteness property, i.e., left or right invertibility implies invertibility. We say that the group G is $L^1$ -surjunctive, resp. finitely $L^1$ -surjunctive, if all such linear NUCA are automatically surjective whenever they are stably injective, resp. when in addition k is finite. In parallel, we introduce the ring $D^1(k[G])$ which is the Cartesian product $k[G] \\times (k[G])[G]$ as an additive group but the multiplication is twisted in the second component. The ring $D^1(k[G])$ contains naturally the group ring $k[G]$ and we obtain a dynamical characterization of its stable finiteness for every field k in terms of the finite $L^1$ -surjunctivity of the group G , which holds, for example, when G is residually finite or initially subamenable. Our results extend known results in the case of CA.","PeriodicalId":55284,"journal":{"name":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable finiteness of twisted group rings and noisy linear cellular automata\",\"authors\":\"Xuan Kien Phung\",\"doi\":\"10.4153/s0008414x23000329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For linear nonuniform cellular automata (NUCA) which are local perturbations of linear CA over a group universe G and a finite-dimensional vector space alphabet V over an arbitrary field k , we investigate their Dedekind finiteness property, also known as the direct finiteness property, i.e., left or right invertibility implies invertibility. We say that the group G is $L^1$ -surjunctive, resp. finitely $L^1$ -surjunctive, if all such linear NUCA are automatically surjective whenever they are stably injective, resp. when in addition k is finite. In parallel, we introduce the ring $D^1(k[G])$ which is the Cartesian product $k[G] \\\\times (k[G])[G]$ as an additive group but the multiplication is twisted in the second component. The ring $D^1(k[G])$ contains naturally the group ring $k[G]$ and we obtain a dynamical characterization of its stable finiteness for every field k in terms of the finite $L^1$ -surjunctivity of the group G , which holds, for example, when G is residually finite or initially subamenable. Our results extend known results in the case of CA.\",\"PeriodicalId\":55284,\"journal\":{\"name\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics-Journal Canadien De Mathematiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000329\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics-Journal Canadien De Mathematiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000329","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要对于线性非均匀元胞自动机(NUCA),即群域G上的线性CA和有限维向量空间V在任意域k上的局部摄动,研究了它们的Dedekind有限性质,也称为直接有限性质,即左或右可逆性意味着可逆性。我们说群G是L^1 -上合的。有限$L^1$ -上合,如果所有这样的线性NUCA在稳定内射时都是自动满射,则当k是有限的时候。同时,我们引入环$D^1(k[G])$,它是笛卡尔积$k[G] \乘以(k[G])[G]$作为一个可加群,但乘法在第二个分量中是扭曲的。环$D^1(k[G])$自然包含群环$k[G]$,我们用群G的有限$L^1$ -上合性得到了它对每一个域k的稳定有限性的动力学表征,例如,当G是剩余有限的或初始可子的。我们的结果扩展了CA的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable finiteness of twisted group rings and noisy linear cellular automata
Abstract For linear nonuniform cellular automata (NUCA) which are local perturbations of linear CA over a group universe G and a finite-dimensional vector space alphabet V over an arbitrary field k , we investigate their Dedekind finiteness property, also known as the direct finiteness property, i.e., left or right invertibility implies invertibility. We say that the group G is $L^1$ -surjunctive, resp. finitely $L^1$ -surjunctive, if all such linear NUCA are automatically surjective whenever they are stably injective, resp. when in addition k is finite. In parallel, we introduce the ring $D^1(k[G])$ which is the Cartesian product $k[G] \times (k[G])[G]$ as an additive group but the multiplication is twisted in the second component. The ring $D^1(k[G])$ contains naturally the group ring $k[G]$ and we obtain a dynamical characterization of its stable finiteness for every field k in terms of the finite $L^1$ -surjunctivity of the group G , which holds, for example, when G is residually finite or initially subamenable. Our results extend known results in the case of CA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
58
审稿时长
4.5 months
期刊介绍: The Canadian Journal of Mathematics (CJM) publishes original, high-quality research papers in all branches of mathematics. The Journal is a flagship publication of the Canadian Mathematical Society and has been published continuously since 1949. New research papers are published continuously online and collated into print issues six times each year. To be submitted to the Journal, papers should be at least 18 pages long and may be written in English or in French. Shorter papers should be submitted to the Canadian Mathematical Bulletin. Le Journal canadien de mathématiques (JCM) publie des articles de recherche innovants de grande qualité dans toutes les branches des mathématiques. Publication phare de la Société mathématique du Canada, il est publié en continu depuis 1949. En ligne, la revue propose constamment de nouveaux articles de recherche, puis les réunit dans des numéros imprimés six fois par année. Les textes présentés au JCM doivent compter au moins 18 pages et être rédigés en anglais ou en français. C’est le Bulletin canadien de mathématiques qui reçoit les articles plus courts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信