在由\Big {{[\sqrt 2n{] }\over n }\mid n \in\mathbb{N}\Big}生成的乘法组上。v

IF 0.4 Q4 MATHEMATICS
I. Kátai, B. M. Phong
{"title":"在由\\Big {{[\\sqrt 2n{] }\\over n }\\mid n \\in\\mathbb{N}\\Big}生成的乘法组上。v","authors":"I. Kátai, B. M. Phong","doi":"10.7546/nntdm.2023.29.2.348-353","DOIUrl":null,"url":null,"abstract":"Let $f,g$ be completely multiplicative functions, $\\vert f(n)\\vert=\\vert g(n)\\vert =1 (n\\in\\mathbb{N})$. Assume that $${1\\over {\\log x}}\\sum_{n\\le x}{\\vert g([\\sqrt{2}n])-Cf(n)\\vert\\over n}\\to 0 \\quad (x\\to\\infty).$$ Then $$f(n)=g(n)=n^{i\\tau},\\quad C=(\\sqrt{2})^{i\\tau}, \\tau\\in \\mathbb{R}.$$","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":"111 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the multiplicative group generated by \\\\Big\\\\{{[\\\\sqrt {2}n]\\\\over n}~\\\\mid~n\\\\in\\\\mathbb{N} \\\\Big\\\\}. V\",\"authors\":\"I. Kátai, B. M. Phong\",\"doi\":\"10.7546/nntdm.2023.29.2.348-353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $f,g$ be completely multiplicative functions, $\\\\vert f(n)\\\\vert=\\\\vert g(n)\\\\vert =1 (n\\\\in\\\\mathbb{N})$. Assume that $${1\\\\over {\\\\log x}}\\\\sum_{n\\\\le x}{\\\\vert g([\\\\sqrt{2}n])-Cf(n)\\\\vert\\\\over n}\\\\to 0 \\\\quad (x\\\\to\\\\infty).$$ Then $$f(n)=g(n)=n^{i\\\\tau},\\\\quad C=(\\\\sqrt{2})^{i\\\\tau}, \\\\tau\\\\in \\\\mathbb{R}.$$\",\"PeriodicalId\":44060,\"journal\":{\"name\":\"Notes on Number Theory and Discrete Mathematics\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notes on Number Theory and Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/nntdm.2023.29.2.348-353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.2.348-353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$f,g$是完全乘法函数$\vert f(n)\vert=\vert g(n)\vert =1 (n\in\mathbb{N})$。假设$${1\over {\log x}}\sum_{n\le x}{\vert g([\sqrt{2}n])-Cf(n)\vert\over n}\to 0 \quad (x\to\infty).$$那么 $$f(n)=g(n)=n^{i\tau},\quad C=(\sqrt{2})^{i\tau}, \tau\in \mathbb{R}.$$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the multiplicative group generated by \Big\{{[\sqrt {2}n]\over n}~\mid~n\in\mathbb{N} \Big\}. V
Let $f,g$ be completely multiplicative functions, $\vert f(n)\vert=\vert g(n)\vert =1 (n\in\mathbb{N})$. Assume that $${1\over {\log x}}\sum_{n\le x}{\vert g([\sqrt{2}n])-Cf(n)\vert\over n}\to 0 \quad (x\to\infty).$$ Then $$f(n)=g(n)=n^{i\tau},\quad C=(\sqrt{2})^{i\tau}, \tau\in \mathbb{R}.$$
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信