{"title":"顶点传递图及其生成子图的谱界","authors":"Arindam Biswas, Jyoti Prakash Saha","doi":"10.5802/alco.278","DOIUrl":null,"url":null,"abstract":"For any finite, undirected, non-bipartite, vertex-transitive graph, we establish an explicit lower bound for the smallest eigenvalue of its normalised adjacency operator, which depends on the graph only through its degree and its vertex-Cheeger constant. We also prove an analogous result for a large class of irregular graphs, obtained as spanning subgraphs of vertex-transitive graphs. Using a result of Babai, we obtain a lower bound for the smallest eigenvalue of the normalised adjacency operator of a vertex-transitive graph in terms of its diameter and its degree.","PeriodicalId":36046,"journal":{"name":"Algebraic Combinatorics","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A spectral bound for vertex-transitive graphs and their spanning subgraphs\",\"authors\":\"Arindam Biswas, Jyoti Prakash Saha\",\"doi\":\"10.5802/alco.278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any finite, undirected, non-bipartite, vertex-transitive graph, we establish an explicit lower bound for the smallest eigenvalue of its normalised adjacency operator, which depends on the graph only through its degree and its vertex-Cheeger constant. We also prove an analogous result for a large class of irregular graphs, obtained as spanning subgraphs of vertex-transitive graphs. Using a result of Babai, we obtain a lower bound for the smallest eigenvalue of the normalised adjacency operator of a vertex-transitive graph in terms of its diameter and its degree.\",\"PeriodicalId\":36046,\"journal\":{\"name\":\"Algebraic Combinatorics\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/alco.278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/alco.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A spectral bound for vertex-transitive graphs and their spanning subgraphs
For any finite, undirected, non-bipartite, vertex-transitive graph, we establish an explicit lower bound for the smallest eigenvalue of its normalised adjacency operator, which depends on the graph only through its degree and its vertex-Cheeger constant. We also prove an analogous result for a large class of irregular graphs, obtained as spanning subgraphs of vertex-transitive graphs. Using a result of Babai, we obtain a lower bound for the smallest eigenvalue of the normalised adjacency operator of a vertex-transitive graph in terms of its diameter and its degree.