N. I. Palya, K. A. Fraser, Y. Hong, N. Zhu, M. B. Williams, K. Doherty, P. G. Allison, J. B. Jordon
{"title":"添加剂搅拌摩擦沉积修复高强铝合金疲劳行为的多物理场预测","authors":"N. I. Palya, K. A. Fraser, Y. Hong, N. Zhu, M. B. Williams, K. Doherty, P. G. Allison, J. B. Jordon","doi":"10.1007/s40192-023-00309-3","DOIUrl":null,"url":null,"abstract":"Abstract A smooth particle hydrodynamic (SPH) simulation of an additive friction stir deposition (AFSD) repair was used to inform a multi-physics approach to predict the fatigue life of a high strength aluminum alloy. The AFSD process is a solid-state layer-by-layer additive manufacturing approach in which a hollow tool containing feedstock is used to deposit material. While an understanding of the evolving microstructures is necessary to predict material performance, the elevated temperatures and strain rates associated with severe plastic deformation processes (SPDP) make accurate collection of experimental data within AFSD difficult. Without the ability to experimentally determine material history within the AFSD process, an SPH model was employed to predict the thermomechanical history. The SPH simulation of an AFSD repair was used to inform several microstructural models to predict material history during and after processing with AFSD and a post-processing heat treatment. These microstructure models are then used to inform a mechanistic microstructure and performance model to predict the fatigue life of an AFSD repair in AA7075.","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":"18 7-8","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-physics Approach to Predict Fatigue Behavior of High Strength Aluminum Alloy Repaired via Additive Friction Stir Deposition\",\"authors\":\"N. I. Palya, K. A. Fraser, Y. Hong, N. Zhu, M. B. Williams, K. Doherty, P. G. Allison, J. B. Jordon\",\"doi\":\"10.1007/s40192-023-00309-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A smooth particle hydrodynamic (SPH) simulation of an additive friction stir deposition (AFSD) repair was used to inform a multi-physics approach to predict the fatigue life of a high strength aluminum alloy. The AFSD process is a solid-state layer-by-layer additive manufacturing approach in which a hollow tool containing feedstock is used to deposit material. While an understanding of the evolving microstructures is necessary to predict material performance, the elevated temperatures and strain rates associated with severe plastic deformation processes (SPDP) make accurate collection of experimental data within AFSD difficult. Without the ability to experimentally determine material history within the AFSD process, an SPH model was employed to predict the thermomechanical history. The SPH simulation of an AFSD repair was used to inform several microstructural models to predict material history during and after processing with AFSD and a post-processing heat treatment. These microstructure models are then used to inform a mechanistic microstructure and performance model to predict the fatigue life of an AFSD repair in AA7075.\",\"PeriodicalId\":13604,\"journal\":{\"name\":\"Integrating Materials and Manufacturing Innovation\",\"volume\":\"18 7-8\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrating Materials and Manufacturing Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40192-023-00309-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40192-023-00309-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Multi-physics Approach to Predict Fatigue Behavior of High Strength Aluminum Alloy Repaired via Additive Friction Stir Deposition
Abstract A smooth particle hydrodynamic (SPH) simulation of an additive friction stir deposition (AFSD) repair was used to inform a multi-physics approach to predict the fatigue life of a high strength aluminum alloy. The AFSD process is a solid-state layer-by-layer additive manufacturing approach in which a hollow tool containing feedstock is used to deposit material. While an understanding of the evolving microstructures is necessary to predict material performance, the elevated temperatures and strain rates associated with severe plastic deformation processes (SPDP) make accurate collection of experimental data within AFSD difficult. Without the ability to experimentally determine material history within the AFSD process, an SPH model was employed to predict the thermomechanical history. The SPH simulation of an AFSD repair was used to inform several microstructural models to predict material history during and after processing with AFSD and a post-processing heat treatment. These microstructure models are then used to inform a mechanistic microstructure and performance model to predict the fatigue life of an AFSD repair in AA7075.
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.