Yan Li, Luke Zhao, Tianhu He, Xiaogeng Tian, Kai Liao
{"title":"基于时空非局域效应的广义热弹性理论的硅超短脉冲激光烧蚀模型","authors":"Yan Li, Luke Zhao, Tianhu He, Xiaogeng Tian, Kai Liao","doi":"10.1080/01495739.2023.2268141","DOIUrl":null,"url":null,"abstract":"AbstractThe present work is devoted to establishing the ultrashort pulse laser ablation generalized thermoelastic model with spatio-temporal nonlocal effect and investigating the transient responses of the process of silicon ablated by the picosecond pulse laser. The research is divided into three cases. 1) The solid silicon before the target surface melting is studied, and the transient responses of the final state of this case are taken as the initial conditions of the Case Two. 2) The liquid silicon after the target surface melting is researched, and the heat flux taken away by vaporization is considered in the boundary condition. 3) The solid silicon after the target surface melting is discussed, and the moving solid-liquid interface is regarded as the coordinate origin. The coupled governing equations containing spatial nonlocal parameter, time delay factor, and kernel function are established and solved by the Laplace transform together with its numerical inversion. The melting time and depth of target are emphatically discussed. The temperature, displacement and stress with different laser intensity, spatial nonlocal parameter, time delay factor, kernel function as well as time are obtained and illustrated graphically.Keywords: Ablationgeneralized thermoelastic theoryspatio-temporal nonlocal effectultrashort pulse laser processingvaporization Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is supported by the National Natural Science Foundation of China (11732007).","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ultrashort pulse laser ablation model of silicon based on the generalized thermoelastic theory with spatio-temporal nonlocal effect\",\"authors\":\"Yan Li, Luke Zhao, Tianhu He, Xiaogeng Tian, Kai Liao\",\"doi\":\"10.1080/01495739.2023.2268141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe present work is devoted to establishing the ultrashort pulse laser ablation generalized thermoelastic model with spatio-temporal nonlocal effect and investigating the transient responses of the process of silicon ablated by the picosecond pulse laser. The research is divided into three cases. 1) The solid silicon before the target surface melting is studied, and the transient responses of the final state of this case are taken as the initial conditions of the Case Two. 2) The liquid silicon after the target surface melting is researched, and the heat flux taken away by vaporization is considered in the boundary condition. 3) The solid silicon after the target surface melting is discussed, and the moving solid-liquid interface is regarded as the coordinate origin. The coupled governing equations containing spatial nonlocal parameter, time delay factor, and kernel function are established and solved by the Laplace transform together with its numerical inversion. The melting time and depth of target are emphatically discussed. The temperature, displacement and stress with different laser intensity, spatial nonlocal parameter, time delay factor, kernel function as well as time are obtained and illustrated graphically.Keywords: Ablationgeneralized thermoelastic theoryspatio-temporal nonlocal effectultrashort pulse laser processingvaporization Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is supported by the National Natural Science Foundation of China (11732007).\",\"PeriodicalId\":54759,\"journal\":{\"name\":\"Journal of Thermal Stresses\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Stresses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01495739.2023.2268141\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01495739.2023.2268141","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
The ultrashort pulse laser ablation model of silicon based on the generalized thermoelastic theory with spatio-temporal nonlocal effect
AbstractThe present work is devoted to establishing the ultrashort pulse laser ablation generalized thermoelastic model with spatio-temporal nonlocal effect and investigating the transient responses of the process of silicon ablated by the picosecond pulse laser. The research is divided into three cases. 1) The solid silicon before the target surface melting is studied, and the transient responses of the final state of this case are taken as the initial conditions of the Case Two. 2) The liquid silicon after the target surface melting is researched, and the heat flux taken away by vaporization is considered in the boundary condition. 3) The solid silicon after the target surface melting is discussed, and the moving solid-liquid interface is regarded as the coordinate origin. The coupled governing equations containing spatial nonlocal parameter, time delay factor, and kernel function are established and solved by the Laplace transform together with its numerical inversion. The melting time and depth of target are emphatically discussed. The temperature, displacement and stress with different laser intensity, spatial nonlocal parameter, time delay factor, kernel function as well as time are obtained and illustrated graphically.Keywords: Ablationgeneralized thermoelastic theoryspatio-temporal nonlocal effectultrashort pulse laser processingvaporization Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research is supported by the National Natural Science Foundation of China (11732007).
期刊介绍:
The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.