单原子光催化剂在环境污染物去除和可再生能源生产中的应用

IF 11.4 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Qing Liu, Yujie Zhao, Jingyi Wang, Yilun Zhou, Xiaolu Liu, Mengjie Hao, Zhongshan Chen, Suhua Wang, Hui Yang, Xiangke Wang
{"title":"单原子光催化剂在环境污染物去除和可再生能源生产中的应用","authors":"Qing Liu, Yujie Zhao, Jingyi Wang, Yilun Zhou, Xiaolu Liu, Mengjie Hao, Zhongshan Chen, Suhua Wang, Hui Yang, Xiangke Wang","doi":"10.1080/10643389.2023.2274259","DOIUrl":null,"url":null,"abstract":"AbstractGreen and clean photocatalytic technology has been extensively applied to degrade environmental pollutants and produce renewable energy, which is an important mean to solve environmental and energy problems. However, limited to the cost and efficiency of photocatalysts, it is difficult to realize large-scale application. In recent years, the SAPCs have added new vitality into this field. SAPCs have the active homogeneous centers, heterogeneous structures, stability, high catalytic activity and selectivity properties. The related researches on its synthesis, characterization and application have become a hot spot in many fields. In this review, the photocatalytic H2 production, CO2 reduction, nitrogen fixation, NOx removal, VOCs removal, pollutant degradation, reduction of radionuclides and heavy metal ions using SAPCs are reviewed. The advantages and disadvantages of the six kinds of SAPCs substrates are analyzed, and design strategies are carefully summarized. The mechanisms of photocatalysis, isolated-site reactions, photogenerated e−-h+ transfer and the construction of efficient photoactivation cycles are discussed. Finally, the future development trend of SAPCs is prospected. This review will provide a reference for the design of high efficiency SAPCs.HighlightsThe structures, characteristics and synthesis of SAPCs with different substrates are reviewed.The applications of SAPCs and their photocatalytic removal for different pollutants are introduced.The photocatalytic reaction processes and mechanisms for different pollutants are discussed.The development direction and challenges of SAPCs in the field of environmental energy are prospected.Keywords: Environmental pollutant removalmechanism analysispollutant degradationrenewable energy productionsingle-atom photocatalystsHandling Editor: Jose-Julio Ortega-Calvo Authors contributionQing Liu contributed to conceptualization, investigation, data analysis, and writing original draft. Yujie Zhao contributed to investigation, data analysis and editing. Jingyi Wang, Yilun Zhou, Xiaolu Liu, Mengjie Hao and Suhua Wang contributed to review. Zhongshan Chen, Hui Yang and Xiangke Wang contributed to funding acquisition, supervision, project administration, review, and editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingWe gratefully acknowledge funding support from the National Science Foundation of China [Grants 22276054; U2167218; 22006036], and the Beijing Outstanding Young Scientist Program (HY, ZC, and XW).","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"5 1","pages":"0"},"PeriodicalIF":11.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of single-atom-based photocatalysts in environmental pollutant removal and renewable energy production\",\"authors\":\"Qing Liu, Yujie Zhao, Jingyi Wang, Yilun Zhou, Xiaolu Liu, Mengjie Hao, Zhongshan Chen, Suhua Wang, Hui Yang, Xiangke Wang\",\"doi\":\"10.1080/10643389.2023.2274259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractGreen and clean photocatalytic technology has been extensively applied to degrade environmental pollutants and produce renewable energy, which is an important mean to solve environmental and energy problems. However, limited to the cost and efficiency of photocatalysts, it is difficult to realize large-scale application. In recent years, the SAPCs have added new vitality into this field. SAPCs have the active homogeneous centers, heterogeneous structures, stability, high catalytic activity and selectivity properties. The related researches on its synthesis, characterization and application have become a hot spot in many fields. In this review, the photocatalytic H2 production, CO2 reduction, nitrogen fixation, NOx removal, VOCs removal, pollutant degradation, reduction of radionuclides and heavy metal ions using SAPCs are reviewed. The advantages and disadvantages of the six kinds of SAPCs substrates are analyzed, and design strategies are carefully summarized. The mechanisms of photocatalysis, isolated-site reactions, photogenerated e−-h+ transfer and the construction of efficient photoactivation cycles are discussed. Finally, the future development trend of SAPCs is prospected. This review will provide a reference for the design of high efficiency SAPCs.HighlightsThe structures, characteristics and synthesis of SAPCs with different substrates are reviewed.The applications of SAPCs and their photocatalytic removal for different pollutants are introduced.The photocatalytic reaction processes and mechanisms for different pollutants are discussed.The development direction and challenges of SAPCs in the field of environmental energy are prospected.Keywords: Environmental pollutant removalmechanism analysispollutant degradationrenewable energy productionsingle-atom photocatalystsHandling Editor: Jose-Julio Ortega-Calvo Authors contributionQing Liu contributed to conceptualization, investigation, data analysis, and writing original draft. Yujie Zhao contributed to investigation, data analysis and editing. Jingyi Wang, Yilun Zhou, Xiaolu Liu, Mengjie Hao and Suhua Wang contributed to review. Zhongshan Chen, Hui Yang and Xiangke Wang contributed to funding acquisition, supervision, project administration, review, and editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingWe gratefully acknowledge funding support from the National Science Foundation of China [Grants 22276054; U2167218; 22006036], and the Beijing Outstanding Young Scientist Program (HY, ZC, and XW).\",\"PeriodicalId\":10823,\"journal\":{\"name\":\"Critical Reviews in Environmental Science and Technology\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Environmental Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10643389.2023.2274259\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10643389.2023.2274259","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要绿色清洁的光催化技术已被广泛应用于降解环境污染物和生产可再生能源,是解决环境和能源问题的重要手段。然而,受限于光催化剂的成本和效率,难以实现大规模应用。近年来,SAPCs为这一领域注入了新的活力。SAPCs具有活性均相中心、非均相结构、稳定性、高催化活性和选择性等特点。其合成、表征及应用等相关研究已成为诸多领域的热点。本文综述了SAPCs在光催化制氢、CO2还原、固氮、NOx去除、VOCs去除、污染物降解、放射性核素和重金属离子还原等方面的应用。分析了六种SAPCs衬底的优缺点,并仔细总结了设计策略。讨论了光催化、分离位反应、光生成e−-h+转移和高效光活化循环的构建机理。最后,展望了SAPCs的未来发展趋势。研究结果可为高效SAPCs的设计提供参考。综述了不同衬底的SAPCs的结构、特点和合成方法。介绍了SAPCs的应用及其对不同污染物的光催化去除。讨论了不同污染物的光催化反应过程和机理。展望了SAPCs在环境能源领域的发展方向和面临的挑战。关键词:环境污染物去除机理分析污染物降解可再生能源生产单原子光催化剂处理编辑:Jose-Julio Ortega-Calvo作者贡献:刘清参与了概念化、调查、数据分析和撰写原稿。赵玉杰参与调查、数据分析和编辑。王静怡,周一伦,刘晓璐,郝梦杰,王素华。陈中山、杨辉、王向科参与了项目的资金筹措、监督、项目管理、评审和编辑工作。披露声明作者未报告潜在的利益冲突。我们感谢中国国家自然科学基金资助[基金号:22276054;U2167218;[22006036]和北京市杰出青年科学家计划(HY, ZC, XW)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of single-atom-based photocatalysts in environmental pollutant removal and renewable energy production
AbstractGreen and clean photocatalytic technology has been extensively applied to degrade environmental pollutants and produce renewable energy, which is an important mean to solve environmental and energy problems. However, limited to the cost and efficiency of photocatalysts, it is difficult to realize large-scale application. In recent years, the SAPCs have added new vitality into this field. SAPCs have the active homogeneous centers, heterogeneous structures, stability, high catalytic activity and selectivity properties. The related researches on its synthesis, characterization and application have become a hot spot in many fields. In this review, the photocatalytic H2 production, CO2 reduction, nitrogen fixation, NOx removal, VOCs removal, pollutant degradation, reduction of radionuclides and heavy metal ions using SAPCs are reviewed. The advantages and disadvantages of the six kinds of SAPCs substrates are analyzed, and design strategies are carefully summarized. The mechanisms of photocatalysis, isolated-site reactions, photogenerated e−-h+ transfer and the construction of efficient photoactivation cycles are discussed. Finally, the future development trend of SAPCs is prospected. This review will provide a reference for the design of high efficiency SAPCs.HighlightsThe structures, characteristics and synthesis of SAPCs with different substrates are reviewed.The applications of SAPCs and their photocatalytic removal for different pollutants are introduced.The photocatalytic reaction processes and mechanisms for different pollutants are discussed.The development direction and challenges of SAPCs in the field of environmental energy are prospected.Keywords: Environmental pollutant removalmechanism analysispollutant degradationrenewable energy productionsingle-atom photocatalystsHandling Editor: Jose-Julio Ortega-Calvo Authors contributionQing Liu contributed to conceptualization, investigation, data analysis, and writing original draft. Yujie Zhao contributed to investigation, data analysis and editing. Jingyi Wang, Yilun Zhou, Xiaolu Liu, Mengjie Hao and Suhua Wang contributed to review. Zhongshan Chen, Hui Yang and Xiangke Wang contributed to funding acquisition, supervision, project administration, review, and editing.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingWe gratefully acknowledge funding support from the National Science Foundation of China [Grants 22276054; U2167218; 22006036], and the Beijing Outstanding Young Scientist Program (HY, ZC, and XW).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
27.30
自引率
1.60%
发文量
64
审稿时长
2 months
期刊介绍: Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics. Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges. The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信