N. R. Mollica, A. L. Cohen, F. Horton, Delia W. Oppo, Andrew S. Solow, David McGee
{"title":"用多变量Sr - U珊瑚测温法捕获赤道太平洋变率","authors":"N. R. Mollica, A. L. Cohen, F. Horton, Delia W. Oppo, Andrew S. Solow, David McGee","doi":"10.1029/2022pa004508","DOIUrl":null,"url":null,"abstract":"Abstract Sr‐U, a coral‐based paleothermometer, corrects for the effects of Rayleigh Fractionation on Sr/Ca by regressing multiple, paired U/Ca and Sr/Ca values. Prior applications of Sr‐U captured mean annual sea surface temperatures (SSTs), inter‐annual variability, and long‐term trends. However, because many Sr/Ca‐U/Ca pairs are needed for a single Sr‐U value as originally formulated, the temporal resolution of the proxy is typically limited to 1 year. Here, we address this limitation by applying laser ablation inductively coupled plasma mass spectrometry (LA‐ICPMS) to three Porites colonies from Jarvis and Nikumaroro Islands in the central equatorial Pacific (CEP), generating ∼25 Sr/Ca‐U/Ca pairs per month of skeletal growth. Both Sr/Ca and U/Ca vary significantly over small (sub‐mm) length scales and support the calculation of Sr‐U values using the original regression method. Over the represented temperature range of 24–31°C, the Sr/Ca‐U/Ca‐SST relationships are nonlinear, a finding consistent with predictions of the Rayleigh model. To reflect this non‐linearity, we developed a calibration using multivariate nonlinear regression. The multivariate, three‐coral calibration was applied to 20 years of monthly resolved Sr/Ca and U/Ca of a coral interval not included in the calibration, yielding RMSE = 0.73°C and r 2 = 0.85 ( p < 0.05; df = 256). The multivariate calibration performed significantly better than Sr/Ca alone ( r 2 = 0.28). Applying the new calibration to a subfossil Porites from Kiritimati Atoll, CEP (2200 Before Present) yields equivalent phase and amplitude of interannual variability, but water temperatures ∼1.6°C cooler than they are in this region today.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":"39 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capturing Equatorial Pacific Variability with Multivariate Sr‐U Coral Thermometry\",\"authors\":\"N. R. Mollica, A. L. Cohen, F. Horton, Delia W. Oppo, Andrew S. Solow, David McGee\",\"doi\":\"10.1029/2022pa004508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Sr‐U, a coral‐based paleothermometer, corrects for the effects of Rayleigh Fractionation on Sr/Ca by regressing multiple, paired U/Ca and Sr/Ca values. Prior applications of Sr‐U captured mean annual sea surface temperatures (SSTs), inter‐annual variability, and long‐term trends. However, because many Sr/Ca‐U/Ca pairs are needed for a single Sr‐U value as originally formulated, the temporal resolution of the proxy is typically limited to 1 year. Here, we address this limitation by applying laser ablation inductively coupled plasma mass spectrometry (LA‐ICPMS) to three Porites colonies from Jarvis and Nikumaroro Islands in the central equatorial Pacific (CEP), generating ∼25 Sr/Ca‐U/Ca pairs per month of skeletal growth. Both Sr/Ca and U/Ca vary significantly over small (sub‐mm) length scales and support the calculation of Sr‐U values using the original regression method. Over the represented temperature range of 24–31°C, the Sr/Ca‐U/Ca‐SST relationships are nonlinear, a finding consistent with predictions of the Rayleigh model. To reflect this non‐linearity, we developed a calibration using multivariate nonlinear regression. The multivariate, three‐coral calibration was applied to 20 years of monthly resolved Sr/Ca and U/Ca of a coral interval not included in the calibration, yielding RMSE = 0.73°C and r 2 = 0.85 ( p < 0.05; df = 256). The multivariate calibration performed significantly better than Sr/Ca alone ( r 2 = 0.28). Applying the new calibration to a subfossil Porites from Kiritimati Atoll, CEP (2200 Before Present) yields equivalent phase and amplitude of interannual variability, but water temperatures ∼1.6°C cooler than they are in this region today.\",\"PeriodicalId\":54239,\"journal\":{\"name\":\"Paleoceanography and Paleoclimatology\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paleoceanography and Paleoclimatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2022pa004508\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2022pa004508","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Capturing Equatorial Pacific Variability with Multivariate Sr‐U Coral Thermometry
Abstract Sr‐U, a coral‐based paleothermometer, corrects for the effects of Rayleigh Fractionation on Sr/Ca by regressing multiple, paired U/Ca and Sr/Ca values. Prior applications of Sr‐U captured mean annual sea surface temperatures (SSTs), inter‐annual variability, and long‐term trends. However, because many Sr/Ca‐U/Ca pairs are needed for a single Sr‐U value as originally formulated, the temporal resolution of the proxy is typically limited to 1 year. Here, we address this limitation by applying laser ablation inductively coupled plasma mass spectrometry (LA‐ICPMS) to three Porites colonies from Jarvis and Nikumaroro Islands in the central equatorial Pacific (CEP), generating ∼25 Sr/Ca‐U/Ca pairs per month of skeletal growth. Both Sr/Ca and U/Ca vary significantly over small (sub‐mm) length scales and support the calculation of Sr‐U values using the original regression method. Over the represented temperature range of 24–31°C, the Sr/Ca‐U/Ca‐SST relationships are nonlinear, a finding consistent with predictions of the Rayleigh model. To reflect this non‐linearity, we developed a calibration using multivariate nonlinear regression. The multivariate, three‐coral calibration was applied to 20 years of monthly resolved Sr/Ca and U/Ca of a coral interval not included in the calibration, yielding RMSE = 0.73°C and r 2 = 0.85 ( p < 0.05; df = 256). The multivariate calibration performed significantly better than Sr/Ca alone ( r 2 = 0.28). Applying the new calibration to a subfossil Porites from Kiritimati Atoll, CEP (2200 Before Present) yields equivalent phase and amplitude of interannual variability, but water temperatures ∼1.6°C cooler than they are in this region today.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.