用人工神经网络电位实现原子应力计算

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ivan Lobzenko, Tomohito Tsuru, Hideki Mori, Daisuke Matsunaka, Yoshinori Shiihara
{"title":"用人工神经网络电位实现原子应力计算","authors":"Ivan Lobzenko, Tomohito Tsuru, Hideki Mori, Daisuke Matsunaka, Yoshinori Shiihara","doi":"10.2320/matertrans.mt-m2023093","DOIUrl":null,"url":null,"abstract":"Atomic stress, utilized in molecular mechanics and molecular dynamics, is valuable in analyzing complex phenomena such as heat transfer, crack propagation and void growth. However, traditional modeling techniques designed for large-scale systems may lack the precision achievable through first-principles calculations. To overcome this limitation, we propose an approach based on artificial neural network (ANN) potentials to compute atomic stress. A crucial aspect of this method is the use of central force decomposition to derive the atomic stress tensor of the ANN potential, ensuring compliance with the balance between linear and angular momentum. By comparing atomic stress calculations for surface systems in Fe and Al using the ANN and embedded-atom (EAM) potentials, we demonstrate that the ANN potential accurately reproduces the stress oscillations near the surface layer predicted by first-principles calculations. This scheme allows us to evaluate atomic stress with nearly the same accuracy as first-principles calculations, even in large-scale models with complex geometries and defect structures.","PeriodicalId":18402,"journal":{"name":"Materials Transactions","volume":"21 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation of Atomic Stress Calculations with Artificial Neural Network Potentials\",\"authors\":\"Ivan Lobzenko, Tomohito Tsuru, Hideki Mori, Daisuke Matsunaka, Yoshinori Shiihara\",\"doi\":\"10.2320/matertrans.mt-m2023093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic stress, utilized in molecular mechanics and molecular dynamics, is valuable in analyzing complex phenomena such as heat transfer, crack propagation and void growth. However, traditional modeling techniques designed for large-scale systems may lack the precision achievable through first-principles calculations. To overcome this limitation, we propose an approach based on artificial neural network (ANN) potentials to compute atomic stress. A crucial aspect of this method is the use of central force decomposition to derive the atomic stress tensor of the ANN potential, ensuring compliance with the balance between linear and angular momentum. By comparing atomic stress calculations for surface systems in Fe and Al using the ANN and embedded-atom (EAM) potentials, we demonstrate that the ANN potential accurately reproduces the stress oscillations near the surface layer predicted by first-principles calculations. This scheme allows us to evaluate atomic stress with nearly the same accuracy as first-principles calculations, even in large-scale models with complex geometries and defect structures.\",\"PeriodicalId\":18402,\"journal\":{\"name\":\"Materials Transactions\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2320/matertrans.mt-m2023093\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/matertrans.mt-m2023093","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子应力在分子力学和分子动力学中的应用,对于分析复杂的传热、裂纹扩展和孔洞生长等现象具有重要的意义。然而,为大型系统设计的传统建模技术可能缺乏通过第一性原理计算实现的精度。为了克服这一限制,我们提出了一种基于人工神经网络(ANN)电位的原子应力计算方法。该方法的一个关键方面是使用中心力分解来推导神经网络势的原子应力张量,确保符合线动量和角动量之间的平衡。通过比较使用人工神经网络和嵌入原子(EAM)电位计算Fe和Al表面系统的原子应力,我们证明人工神经网络电位准确地再现了第一性原理计算预测的表面层附近的应力振荡。该方案使我们能够以几乎与第一性原理计算相同的精度评估原子应力,即使在具有复杂几何形状和缺陷结构的大型模型中也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of Atomic Stress Calculations with Artificial Neural Network Potentials
Atomic stress, utilized in molecular mechanics and molecular dynamics, is valuable in analyzing complex phenomena such as heat transfer, crack propagation and void growth. However, traditional modeling techniques designed for large-scale systems may lack the precision achievable through first-principles calculations. To overcome this limitation, we propose an approach based on artificial neural network (ANN) potentials to compute atomic stress. A crucial aspect of this method is the use of central force decomposition to derive the atomic stress tensor of the ANN potential, ensuring compliance with the balance between linear and angular momentum. By comparing atomic stress calculations for surface systems in Fe and Al using the ANN and embedded-atom (EAM) potentials, we demonstrate that the ANN potential accurately reproduces the stress oscillations near the surface layer predicted by first-principles calculations. This scheme allows us to evaluate atomic stress with nearly the same accuracy as first-principles calculations, even in large-scale models with complex geometries and defect structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Transactions
Materials Transactions 工程技术-材料科学:综合
CiteScore
2.00
自引率
25.00%
发文量
205
审稿时长
2.7 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信