minkowski -曲率neumann问题解的存在性

IF 0.7 4区 数学 Q2 MATHEMATICS
Tianlan Chen, Yali Zhao
{"title":"minkowski -曲率neumann问题解的存在性","authors":"Tianlan Chen, Yali Zhao","doi":"10.1216/rmj.2023.53.1431","DOIUrl":null,"url":null,"abstract":"We show some existence results for the system of nonlocal Neumann problems with the Minkowski-curvature operator (rN−1u′1−u′2)′=rN−1f(r,u,u′), r∈(0,1), u′(0)=0, u′(1)=∫01u′(s)dg(s), where N≥1 is an integer, f:[0,1]×ℝk×Ik→ℝk is continuous and bounded, I≔(−1,1), and g:[0,1]→ℝk is a function of bounded variation. The proof is based on topological-degree arguments and extends to a larger class of nonlinearities.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":"44 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXISTENCE OF SOLUTIONS FOR SYSTEMS OF MINKOWSKI-CURVATURE NEUMANN PROBLEMS\",\"authors\":\"Tianlan Chen, Yali Zhao\",\"doi\":\"10.1216/rmj.2023.53.1431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show some existence results for the system of nonlocal Neumann problems with the Minkowski-curvature operator (rN−1u′1−u′2)′=rN−1f(r,u,u′), r∈(0,1), u′(0)=0, u′(1)=∫01u′(s)dg(s), where N≥1 is an integer, f:[0,1]×ℝk×Ik→ℝk is continuous and bounded, I≔(−1,1), and g:[0,1]→ℝk is a function of bounded variation. The proof is based on topological-degree arguments and extends to a larger class of nonlinearities.\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.1431\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.1431","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了具有minkowski曲率算子(rN−1u′1−u′2)′=rN−1f(r,u,u′),r∈(0,1),u′(0)=0,u′(1)=∫01u′(s)dg(s)的非局部Neumann问题系统的存在性结果,其中N≥1是整数,f:[0,1]×∈k×Ik→∈k是连续有界的,I是(- 1,1),g:[0,1]→∈k是有界变分函数。该证明是基于拓扑度的参数,并扩展到更大的非线性类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXISTENCE OF SOLUTIONS FOR SYSTEMS OF MINKOWSKI-CURVATURE NEUMANN PROBLEMS
We show some existence results for the system of nonlocal Neumann problems with the Minkowski-curvature operator (rN−1u′1−u′2)′=rN−1f(r,u,u′), r∈(0,1), u′(0)=0, u′(1)=∫01u′(s)dg(s), where N≥1 is an integer, f:[0,1]×ℝk×Ik→ℝk is continuous and bounded, I≔(−1,1), and g:[0,1]→ℝk is a function of bounded variation. The proof is based on topological-degree arguments and extends to a larger class of nonlinearities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信