serrin超定问题的分岔结构

IF 0.7 4区 数学 Q2 MATHEMATICS
Guowei Dai, Fang Liu, Qingbo Liu
{"title":"serrin超定问题的分岔结构","authors":"Guowei Dai, Fang Liu, Qingbo Liu","doi":"10.1216/rmj.2023.53.1445","DOIUrl":null,"url":null,"abstract":"We study the bifurcation structure to Serrin’s overdetermined problem such that −Δu=1 in Ω, u=0, ∂νu= const on ∂Ω. We prove that the bifurcation from the straight cylinder Bλ1×ℝ with λ1>0 is critical at the bifurcation point. Moreover, we obtain the global structure of bifurcation branches. To study the global structure of bifurcation branches, we establish a global bifurcation theorem in finite dimensional space.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":"93 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BIFURCATION STRUCTURE TO SERRIN’S OVERDETERMINED PROBLEM\",\"authors\":\"Guowei Dai, Fang Liu, Qingbo Liu\",\"doi\":\"10.1216/rmj.2023.53.1445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the bifurcation structure to Serrin’s overdetermined problem such that −Δu=1 in Ω, u=0, ∂νu= const on ∂Ω. We prove that the bifurcation from the straight cylinder Bλ1×ℝ with λ1>0 is critical at the bifurcation point. Moreover, we obtain the global structure of bifurcation branches. To study the global structure of bifurcation branches, we establish a global bifurcation theorem in finite dimensional space.\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.1445\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.1445","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Serrin的过定问题的分支结构,使得在Ω中−Δu=1,在∂Ω中u=0,∂νu= const。证明了λ1>0的直线圆柱体b λ 1x的分岔在分岔点处是临界的。此外,我们还得到了分支的全局结构。为了研究分岔分支的整体结构,在有限维空间中建立了一个整体分岔定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BIFURCATION STRUCTURE TO SERRIN’S OVERDETERMINED PROBLEM
We study the bifurcation structure to Serrin’s overdetermined problem such that −Δu=1 in Ω, u=0, ∂νu= const on ∂Ω. We prove that the bifurcation from the straight cylinder Bλ1×ℝ with λ1>0 is critical at the bifurcation point. Moreover, we obtain the global structure of bifurcation branches. To study the global structure of bifurcation branches, we establish a global bifurcation theorem in finite dimensional space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信