权值不定的二阶离散周期边值问题正解的全局结构

IF 0.7 4区 数学 Q2 MATHEMATICS
Ruyun Ma, Yali Zhang
{"title":"权值不定的二阶离散周期边值问题正解的全局结构","authors":"Ruyun Ma, Yali Zhang","doi":"10.1216/rmj.2023.53.1525","DOIUrl":null,"url":null,"abstract":"We show the global structure of positive solutions for second order periodic boundary value problem { −Δ2u(t−1)=λa(t)g(u(t)), t∈ℕ1T,u(0)=u(T), u(1)=u(T+1), where ℕ1T={1,2,…,T},T≥3 is an integer, λ>0 is a parameter, g:[0,∞)→[0,∞) is a continuous function with g(0)=0 and a:ℕ1T→ℝ is sign-changing. Depending on the behavior of g near 0 and ∞, we obtain that there exist 0<λ0≤λ1 such that above problem has at least two positive solutions for λ>λ1 and no solution for λ∈(0,λ0). The proof of our main results is based upon bifurcation technique.","PeriodicalId":49591,"journal":{"name":"Rocky Mountain Journal of Mathematics","volume":"277 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR SECOND ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEM WITH INDEFINITE WEIGHT\",\"authors\":\"Ruyun Ma, Yali Zhang\",\"doi\":\"10.1216/rmj.2023.53.1525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the global structure of positive solutions for second order periodic boundary value problem { −Δ2u(t−1)=λa(t)g(u(t)), t∈ℕ1T,u(0)=u(T), u(1)=u(T+1), where ℕ1T={1,2,…,T},T≥3 is an integer, λ>0 is a parameter, g:[0,∞)→[0,∞) is a continuous function with g(0)=0 and a:ℕ1T→ℝ is sign-changing. Depending on the behavior of g near 0 and ∞, we obtain that there exist 0<λ0≤λ1 such that above problem has at least two positive solutions for λ>λ1 and no solution for λ∈(0,λ0). The proof of our main results is based upon bifurcation technique.\",\"PeriodicalId\":49591,\"journal\":{\"name\":\"Rocky Mountain Journal of Mathematics\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rocky Mountain Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1216/rmj.2023.53.1525\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rocky Mountain Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1216/rmj.2023.53.1525","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给出了二阶周期边值问题{−Δ2u(t−1)=λa(t)g(u(t))的正解的整体结构,其中,t∈∈n = t,u(0)=u(t),u(1)=u(t +1),其中,n ={1,2,…,t}, t≥3是整数,λ>0是参数,g:[0,∞)→[0,∞)是连续函数,g(0)=0, a: n = n→t是变号函数。根据g在0和∞附近的行为,我们得到了λ∈(0,λ0)存在0λ1且无解。我们的主要结果的证明是基于分岔技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GLOBAL STRUCTURE OF POSITIVE SOLUTIONS FOR SECOND ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEM WITH INDEFINITE WEIGHT
We show the global structure of positive solutions for second order periodic boundary value problem { −Δ2u(t−1)=λa(t)g(u(t)), t∈ℕ1T,u(0)=u(T), u(1)=u(T+1), where ℕ1T={1,2,…,T},T≥3 is an integer, λ>0 is a parameter, g:[0,∞)→[0,∞) is a continuous function with g(0)=0 and a:ℕ1T→ℝ is sign-changing. Depending on the behavior of g near 0 and ∞, we obtain that there exist 0<λ0≤λ1 such that above problem has at least two positive solutions for λ>λ1 and no solution for λ∈(0,λ0). The proof of our main results is based upon bifurcation technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
71
审稿时长
7.5 months
期刊介绍: Rocky Mountain Journal of Mathematics publishes both research and expository articles in mathematics, and particularly invites well-written survey articles. The Rocky Mountain Journal of Mathematics endeavors to publish significant research papers and substantial expository/survey papers in a broad range of theoretical and applied areas of mathematics. For this reason the editorial board is broadly based and submissions are accepted in most areas of mathematics. In addition, the journal publishes specialized conference proceedings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信