某些球形品种的谐波分析

IF 2.5 1区 数学 Q1 MATHEMATICS
Jayce R. Getz, Chun-Hsien Hsu, Spencer Leslie
{"title":"某些球形品种的谐波分析","authors":"Jayce R. Getz, Chun-Hsien Hsu, Spencer Leslie","doi":"10.4171/jems/1381","DOIUrl":null,"url":null,"abstract":"Braverman and Kazhdan proposed a conjecture, later refined by Ngo and broadened to the framework of spherical varieties by Sakellaridis, that asserts that affine spherical varieties admit Schwartz spaces, Fourier transforms, and Poisson summation formulae. The first author in joint work with B.~Liu and later the first two authors proved these conjectures for certain spherical varieties $Y$ built out of triples of quadratic spaces. However, in these works the Fourier transform was only proven to exist. In the present paper we give, for the first time, an explicit formula for the Fourier transform on $Y.$ We also prove that it is unitary in the nonarchimedean case. As preparation for this result, we give explicit formulae for Fourier transforms on Braverman-Kazhdan spaces attached to maximal parabolic subgroups of split, simple, simply connected groups. These Fourier transforms are of independent interest, for example, from the point of view of analytic number theory.","PeriodicalId":50003,"journal":{"name":"Journal of the European Mathematical Society","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Harmonic analysis on certain spherical varieties\",\"authors\":\"Jayce R. Getz, Chun-Hsien Hsu, Spencer Leslie\",\"doi\":\"10.4171/jems/1381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Braverman and Kazhdan proposed a conjecture, later refined by Ngo and broadened to the framework of spherical varieties by Sakellaridis, that asserts that affine spherical varieties admit Schwartz spaces, Fourier transforms, and Poisson summation formulae. The first author in joint work with B.~Liu and later the first two authors proved these conjectures for certain spherical varieties $Y$ built out of triples of quadratic spaces. However, in these works the Fourier transform was only proven to exist. In the present paper we give, for the first time, an explicit formula for the Fourier transform on $Y.$ We also prove that it is unitary in the nonarchimedean case. As preparation for this result, we give explicit formulae for Fourier transforms on Braverman-Kazhdan spaces attached to maximal parabolic subgroups of split, simple, simply connected groups. These Fourier transforms are of independent interest, for example, from the point of view of analytic number theory.\",\"PeriodicalId\":50003,\"journal\":{\"name\":\"Journal of the European Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the European Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/jems/1381\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the European Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/jems/1381","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

Braverman和Kazhdan提出了一个猜想,后来由Ngo改进,并由Sakellaridis扩展到球变的框架,该猜想断言仿射球变允许Schwartz空间、傅里叶变换和泊松求和公式。第一作者在与B.~Liu和后来的前两位作者的联合工作中,证明了由二次空间三元组构成的某些球变元$Y$的这些猜想。然而,在这些著作中,傅里叶变换只是证明了它的存在。本文首次给出了$Y的傅里叶变换的显式公式。我们也证明了它在非阿基米德情况下是酉的。作为对这一结果的准备,我们给出了Braverman-Kazhdan空间上的傅里叶变换的显式公式,该变换附属于分裂、简单、单连通群的极大抛物子群。这些傅里叶变换是独立的,例如,从解析数论的角度来看。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic analysis on certain spherical varieties
Braverman and Kazhdan proposed a conjecture, later refined by Ngo and broadened to the framework of spherical varieties by Sakellaridis, that asserts that affine spherical varieties admit Schwartz spaces, Fourier transforms, and Poisson summation formulae. The first author in joint work with B.~Liu and later the first two authors proved these conjectures for certain spherical varieties $Y$ built out of triples of quadratic spaces. However, in these works the Fourier transform was only proven to exist. In the present paper we give, for the first time, an explicit formula for the Fourier transform on $Y.$ We also prove that it is unitary in the nonarchimedean case. As preparation for this result, we give explicit formulae for Fourier transforms on Braverman-Kazhdan spaces attached to maximal parabolic subgroups of split, simple, simply connected groups. These Fourier transforms are of independent interest, for example, from the point of view of analytic number theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
103
审稿时长
6-12 weeks
期刊介绍: The Journal of the European Mathematical Society (JEMS) is the official journal of the EMS. The Society, founded in 1990, works at promoting joint scientific efforts between the many different structures that characterize European mathematics. JEMS will publish research articles in all active areas of pure and applied mathematics. These will be selected by a distinguished, international board of editors for their outstanding quality and interest, according to the highest international standards. Occasionally, substantial survey papers on topics of exceptional interest will also be published. Starting in 1999, the Journal was published by Springer-Verlag until the end of 2003. Since 2004 it is published by the EMS Publishing House. The first Editor-in-Chief of the Journal was J. Jost, succeeded by H. Brezis in 2004. The Journal of the European Mathematical Society is covered in: Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信