高八面体群的符号图和符号环

IF 0.4 Q4 MATHEMATICS
Ryo Uchiumi
{"title":"高八面体群的符号图和符号环","authors":"Ryo Uchiumi","doi":"10.5614/ejgta.2023.11.2.7","DOIUrl":null,"url":null,"abstract":"For a graph with edge ordering, a linear order on the edge set, we obtain a permutation of vertices by considering the edges as transpositions of endvertices. It is known from D\\'enes' results that the permutation of a tree is a full cyclic for any edge ordering. As a corollary, D\\'enes counted up the number of representations of a full cyclic permutation by means of product of the minimal number of transpositions. Moreover, a graph with an edge ordering which the permutation is a full cyclic is characterized by graph embedding. In this article, we consider an analogy of these results for signed graphs and hyperoctahedral groups. We give a necessary and sufficient condition for a signed graph to have an edge ordering such that the permutation is an even (or odd) full cyclic. We show that the edge ordering of the signed tree with some loops always gives an even (or odd) full cyclic permutation and count up the number of representations of an odd full cyclic permutation by means of product of the minimal number of transpositions.","PeriodicalId":43771,"journal":{"name":"Electronic Journal of Graph Theory and Applications","volume":"7 2","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Signed graphs and signed cycles of hyperoctahedral groups\",\"authors\":\"Ryo Uchiumi\",\"doi\":\"10.5614/ejgta.2023.11.2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph with edge ordering, a linear order on the edge set, we obtain a permutation of vertices by considering the edges as transpositions of endvertices. It is known from D\\\\'enes' results that the permutation of a tree is a full cyclic for any edge ordering. As a corollary, D\\\\'enes counted up the number of representations of a full cyclic permutation by means of product of the minimal number of transpositions. Moreover, a graph with an edge ordering which the permutation is a full cyclic is characterized by graph embedding. In this article, we consider an analogy of these results for signed graphs and hyperoctahedral groups. We give a necessary and sufficient condition for a signed graph to have an edge ordering such that the permutation is an even (or odd) full cyclic. We show that the edge ordering of the signed tree with some loops always gives an even (or odd) full cyclic permutation and count up the number of representations of an odd full cyclic permutation by means of product of the minimal number of transpositions.\",\"PeriodicalId\":43771,\"journal\":{\"name\":\"Electronic Journal of Graph Theory and Applications\",\"volume\":\"7 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Graph Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/ejgta.2023.11.2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Graph Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ejgta.2023.11.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signed graphs and signed cycles of hyperoctahedral groups
For a graph with edge ordering, a linear order on the edge set, we obtain a permutation of vertices by considering the edges as transpositions of endvertices. It is known from D\'enes' results that the permutation of a tree is a full cyclic for any edge ordering. As a corollary, D\'enes counted up the number of representations of a full cyclic permutation by means of product of the minimal number of transpositions. Moreover, a graph with an edge ordering which the permutation is a full cyclic is characterized by graph embedding. In this article, we consider an analogy of these results for signed graphs and hyperoctahedral groups. We give a necessary and sufficient condition for a signed graph to have an edge ordering such that the permutation is an even (or odd) full cyclic. We show that the edge ordering of the signed tree with some loops always gives an even (or odd) full cyclic permutation and count up the number of representations of an odd full cyclic permutation by means of product of the minimal number of transpositions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
28.60%
发文量
48
审稿时长
52 weeks
期刊介绍: We publish research articles written in English in all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信