{"title":"拉姆齐数的变化和第2行单色三角形的最小数目——构型的着色","authors":"Jamie Bishop, Rebekah Kuss, Benjamin Peet","doi":"10.5614/ejgta.2023.11.2.8","DOIUrl":null,"url":null,"abstract":"This paper begins by exploring some old and new results about Ramsey numbers and minimum numbers of monochromatic triangles in 2 -colorings of complete graphs, both in the disjoint and non-disjoint cases. We then extend the theory, by defining line 2 -colorings of configurations of points and lines and considering the minimum number of non-disjoint monochromatic triangles. We compute specific examples for notable symmetric v 3 configurations before considering a general result regarding the addition or connected sum of configurations through incidence switches. The paper finishes by considering the maximal number of mutually intersecting lines and how this relates to the minimum number of triangles given a line 2 -coloring of a symmetric v 3 configuration.","PeriodicalId":43771,"journal":{"name":"Electronic Journal of Graph Theory and Applications","volume":"20 10","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations on Ramsey numbers and minimum numbers of monochromatic triangles in line $2$-colorings of configurations\",\"authors\":\"Jamie Bishop, Rebekah Kuss, Benjamin Peet\",\"doi\":\"10.5614/ejgta.2023.11.2.8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper begins by exploring some old and new results about Ramsey numbers and minimum numbers of monochromatic triangles in 2 -colorings of complete graphs, both in the disjoint and non-disjoint cases. We then extend the theory, by defining line 2 -colorings of configurations of points and lines and considering the minimum number of non-disjoint monochromatic triangles. We compute specific examples for notable symmetric v 3 configurations before considering a general result regarding the addition or connected sum of configurations through incidence switches. The paper finishes by considering the maximal number of mutually intersecting lines and how this relates to the minimum number of triangles given a line 2 -coloring of a symmetric v 3 configuration.\",\"PeriodicalId\":43771,\"journal\":{\"name\":\"Electronic Journal of Graph Theory and Applications\",\"volume\":\"20 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Graph Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/ejgta.2023.11.2.8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Graph Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/ejgta.2023.11.2.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Variations on Ramsey numbers and minimum numbers of monochromatic triangles in line $2$-colorings of configurations
This paper begins by exploring some old and new results about Ramsey numbers and minimum numbers of monochromatic triangles in 2 -colorings of complete graphs, both in the disjoint and non-disjoint cases. We then extend the theory, by defining line 2 -colorings of configurations of points and lines and considering the minimum number of non-disjoint monochromatic triangles. We compute specific examples for notable symmetric v 3 configurations before considering a general result regarding the addition or connected sum of configurations through incidence switches. The paper finishes by considering the maximal number of mutually intersecting lines and how this relates to the minimum number of triangles given a line 2 -coloring of a symmetric v 3 configuration.
期刊介绍:
We publish research articles written in English in all areas of modern graph theory together with applications to other fields of mathematics, computer science and other sciences.