基于ai的MIMO-NOMA无线通信系统性能优化q -学习方法

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Ammar A. Majeed, Douaa Ali Saed, Ismail Hburi
{"title":"基于ai的MIMO-NOMA无线通信系统性能优化q -学习方法","authors":"Ammar A. Majeed, Douaa Ali Saed, Ismail Hburi","doi":"10.32985/ijeces.14.8.3","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance enhancement of Multiple Input, Multiple Output, and Non-Orthogonal Multiple Access (MIMO-NOMA) wireless communication systems using an Artificial Intelligence (AI) based Q-Learning reinforcement learning approach. The primary challenge addressed is the optimization of power allocation in a MIMO-NOMA system, a complex task given the non-convex nature of the problem. Our proposed Q-Learning approach adaptively adjusts power allocation strategy for proximal and distant users, optimizing the trade-off between various conflicting metrics and significantly improving the system’s performance. Compared to traditional power allocation strategies, our approach showed superior performance across three principal parameters: spectral efficiency, achievable sum rate, and energy efficiency. Specifically, our methodology achieved approximately a 140% increase in the achievable sum rate and about 93% improvement in energy efficiency at a transmitted power of 20 dB while also enhancing spectral efficiency by approximately 88.6% at 30 dB transmitted Power. These results underscore the potential of reinforcement learning techniques, particularly Q-Learning, as practical solutions for complex optimization problems in wireless communication systems. Future research may investigate the inclusion of enhanced channel simulations and network limitations into the machine learning framework to assess the feasibility and resilience of such intelligent approaches.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"55 10","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Based Q-Learning Approach for Performance Optimization in MIMO-NOMA Wireless Communication Systems\",\"authors\":\"Ammar A. Majeed, Douaa Ali Saed, Ismail Hburi\",\"doi\":\"10.32985/ijeces.14.8.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the performance enhancement of Multiple Input, Multiple Output, and Non-Orthogonal Multiple Access (MIMO-NOMA) wireless communication systems using an Artificial Intelligence (AI) based Q-Learning reinforcement learning approach. The primary challenge addressed is the optimization of power allocation in a MIMO-NOMA system, a complex task given the non-convex nature of the problem. Our proposed Q-Learning approach adaptively adjusts power allocation strategy for proximal and distant users, optimizing the trade-off between various conflicting metrics and significantly improving the system’s performance. Compared to traditional power allocation strategies, our approach showed superior performance across three principal parameters: spectral efficiency, achievable sum rate, and energy efficiency. Specifically, our methodology achieved approximately a 140% increase in the achievable sum rate and about 93% improvement in energy efficiency at a transmitted power of 20 dB while also enhancing spectral efficiency by approximately 88.6% at 30 dB transmitted Power. These results underscore the potential of reinforcement learning techniques, particularly Q-Learning, as practical solutions for complex optimization problems in wireless communication systems. Future research may investigate the inclusion of enhanced channel simulations and network limitations into the machine learning framework to assess the feasibility and resilience of such intelligent approaches.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\"55 10\",\"pages\":\"0\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.8.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.8.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们使用基于人工智能(AI)的Q-Learning强化学习方法研究了多输入、多输出和非正交多址(MIMO-NOMA)无线通信系统的性能增强。解决的主要挑战是MIMO-NOMA系统中的功率分配优化,这是一个复杂的任务,因为问题的非凸性质。我们提出的Q-Learning方法自适应地调整近端和远端用户的功率分配策略,优化各种冲突指标之间的权衡,显著提高系统性能。与传统的功率分配策略相比,我们的方法在三个主要参数上表现出卓越的性能:频谱效率、可实现的和速率和能源效率。具体来说,我们的方法在传输功率为20 dB时实现了可实现的和率提高约140%,能源效率提高约93%,同时在传输功率为30 dB时提高了频谱效率约88.6%。这些结果强调了强化学习技术的潜力,特别是Q-Learning,作为无线通信系统中复杂优化问题的实用解决方案。未来的研究可能会研究将增强的通道模拟和网络限制纳入机器学习框架,以评估这种智能方法的可行性和弹性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-Based Q-Learning Approach for Performance Optimization in MIMO-NOMA Wireless Communication Systems
In this paper, we investigate the performance enhancement of Multiple Input, Multiple Output, and Non-Orthogonal Multiple Access (MIMO-NOMA) wireless communication systems using an Artificial Intelligence (AI) based Q-Learning reinforcement learning approach. The primary challenge addressed is the optimization of power allocation in a MIMO-NOMA system, a complex task given the non-convex nature of the problem. Our proposed Q-Learning approach adaptively adjusts power allocation strategy for proximal and distant users, optimizing the trade-off between various conflicting metrics and significantly improving the system’s performance. Compared to traditional power allocation strategies, our approach showed superior performance across three principal parameters: spectral efficiency, achievable sum rate, and energy efficiency. Specifically, our methodology achieved approximately a 140% increase in the achievable sum rate and about 93% improvement in energy efficiency at a transmitted power of 20 dB while also enhancing spectral efficiency by approximately 88.6% at 30 dB transmitted Power. These results underscore the potential of reinforcement learning techniques, particularly Q-Learning, as practical solutions for complex optimization problems in wireless communication systems. Future research may investigate the inclusion of enhanced channel simulations and network limitations into the machine learning framework to assess the feasibility and resilience of such intelligent approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信