用于非接触式捕获任务的新型可展开多面体夹持器结构设计

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Ruijie Tang, Qizhi Meng, Fugui Xie, Xin-Jun Liu, Jinsong Wang
{"title":"用于非接触式捕获任务的新型可展开多面体夹持器结构设计","authors":"Ruijie Tang, Qizhi Meng, Fugui Xie, Xin-Jun Liu, Jinsong Wang","doi":"10.1115/1.4063968","DOIUrl":null,"url":null,"abstract":"Abstract Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are designed. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method, and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"230 1","pages":"0"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Designs of Novel Deployable Polyhedral Grippers for Noncontact Capturing Missions\",\"authors\":\"Ruijie Tang, Qizhi Meng, Fugui Xie, Xin-Jun Liu, Jinsong Wang\",\"doi\":\"10.1115/1.4063968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are designed. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method, and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063968\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

可展开多面体夹持器因其在非接触式捕获任务中的优先性而受到越来越多的关注。这些抓手的丰富可能有利于各种捕获任务的传导。设计了一种新型可展开多面体夹持器。提出了不同夹具结构设计的设计流程。构建过程中的核心问题归结为多个同步可展开模块的结构设计和组合问题。每个模块包含三个面,由两个转动关节连接,可以实现一个自由度的部署。对采用不同转动关节布置方式的同步展开模块进行了型式综合。对这些模块的运动学和机动性进行了分析,验证了所实现的运动。作为实例,给出了基于不同多面体的四种可展开多面体夹持器及其展开图。样机的展开性能证明了所提设计方法的有效性,并展示了可展开多面体夹持器在各种捕获任务中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Designs of Novel Deployable Polyhedral Grippers for Noncontact Capturing Missions
Abstract Deployable polyhedral grippers have attracted increasing attention for their priority in noncontact capturing missions. Enrichment of these grippers may benefit the conduction of various capturing tasks. In this paper, novel deployable polyhedral grippers are designed. A design flow is proposed for the structural designs of diverse grippers. The core problem during the construction is reducible to the structural designs and combination of multiple synchronously deployable modules. Each module, containing three faces connected by two revolute joints, can realize one-degree-of-freedom deployment. Type synthesis of synchronously deployable modules adopting different layouts of revolute joints is conducted. The mobility and kinematics of these modules are analyzed to verify the achieved motion. As examples, four deployable polyhedral grippers based on different polyhedrons and deployment diagrams are presented. The deployment performance of the prototype proves the validity of the proposed design method, and exhibits the potential of these deployable polyhedral grippers for diverse capturing missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanical Design
Journal of Mechanical Design 工程技术-工程:机械
CiteScore
8.00
自引率
18.20%
发文量
139
审稿时长
3.9 months
期刊介绍: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials. Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信