Weilin Zhang, Lingyi Wang, Hangtao Mao, Zi Wang, Wei Wu
{"title":"不规则可重构智能表面辅助NOMA系统的吞吐量最大化","authors":"Weilin Zhang, Lingyi Wang, Hangtao Mao, Zi Wang, Wei Wu","doi":"10.1186/s13634-023-01076-1","DOIUrl":null,"url":null,"abstract":"Abstract Reconfigurable intelligent surface (RIS) is an emerging technology to improve the spectral efficiency of wireless communication systems. However, the high complexity of beam design and the non-negligible overhead associated with RIS limit the number of elements that can be deployed in practice. In this paper, we investigate the downlink communications of irregularly deployed intelligent reflecting surfaces that assist non-orthogonal multiple access (NOMA) systems. To address this challenge, we propose a novel four-step resource allocation algorithm. Specifically, we first obtain a sub-optimal solution for the sparse deployment of RIS elements using a Simulated Annealing Algorithm. We then solve the power allocation problem by employing an integer optimization algorithm that continuously iterates the immobile point. To simplify and optimize the reflection coefficient matrix, we propose a construction inequality algorithm. Finally, we optimize the channel assignment using a genetic algorithm. The simulation results demonstrate that the proposed irregular RIS-assisted NOMA system outperforms the traditional RIS-assisted orthogonal multiple access system, with a maximum throughput increase of approximately 30%.","PeriodicalId":49203,"journal":{"name":"Eurasip Journal on Advances in Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Throughput maximization for irregular reconfigurable intelligent surface assisted NOMA systems\",\"authors\":\"Weilin Zhang, Lingyi Wang, Hangtao Mao, Zi Wang, Wei Wu\",\"doi\":\"10.1186/s13634-023-01076-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Reconfigurable intelligent surface (RIS) is an emerging technology to improve the spectral efficiency of wireless communication systems. However, the high complexity of beam design and the non-negligible overhead associated with RIS limit the number of elements that can be deployed in practice. In this paper, we investigate the downlink communications of irregularly deployed intelligent reflecting surfaces that assist non-orthogonal multiple access (NOMA) systems. To address this challenge, we propose a novel four-step resource allocation algorithm. Specifically, we first obtain a sub-optimal solution for the sparse deployment of RIS elements using a Simulated Annealing Algorithm. We then solve the power allocation problem by employing an integer optimization algorithm that continuously iterates the immobile point. To simplify and optimize the reflection coefficient matrix, we propose a construction inequality algorithm. Finally, we optimize the channel assignment using a genetic algorithm. The simulation results demonstrate that the proposed irregular RIS-assisted NOMA system outperforms the traditional RIS-assisted orthogonal multiple access system, with a maximum throughput increase of approximately 30%.\",\"PeriodicalId\":49203,\"journal\":{\"name\":\"Eurasip Journal on Advances in Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-023-01076-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Advances in Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13634-023-01076-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Throughput maximization for irregular reconfigurable intelligent surface assisted NOMA systems
Abstract Reconfigurable intelligent surface (RIS) is an emerging technology to improve the spectral efficiency of wireless communication systems. However, the high complexity of beam design and the non-negligible overhead associated with RIS limit the number of elements that can be deployed in practice. In this paper, we investigate the downlink communications of irregularly deployed intelligent reflecting surfaces that assist non-orthogonal multiple access (NOMA) systems. To address this challenge, we propose a novel four-step resource allocation algorithm. Specifically, we first obtain a sub-optimal solution for the sparse deployment of RIS elements using a Simulated Annealing Algorithm. We then solve the power allocation problem by employing an integer optimization algorithm that continuously iterates the immobile point. To simplify and optimize the reflection coefficient matrix, we propose a construction inequality algorithm. Finally, we optimize the channel assignment using a genetic algorithm. The simulation results demonstrate that the proposed irregular RIS-assisted NOMA system outperforms the traditional RIS-assisted orthogonal multiple access system, with a maximum throughput increase of approximately 30%.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.