{"title":"通过电流诱导空隙生长估算金属薄膜粘附强度的非接触方法","authors":"Sudarshan Prasad, Pavan Kumar Vaitheeswaran, Yuvraj Singh, Pei-En Chou, Huanyu Liao, Ganesh Subbarayan","doi":"10.1115/1.4063948","DOIUrl":null,"url":null,"abstract":"Abstract Studies have reported that the electromigration induced void growth velocity in metal thin films is inversely related to the adhesion strength of the metal thin film with the base and passivation layers. It was also observed that the contribution of interface adhesion strength to electromigration resistance decreases with increase in temperature. In this study an expression is derived for the diffusive void growth velocity induced by electromigration from a generalized thermodynamically consistent continuum-based theory for reaction-diffusion driven solid state interface evolution. This relation captures the effect of adhesion with the base and passivation layers on electromigration resistance of thin metal films. Electromigration experiments were carried out at elevated temperatures and high current density to induce voiding in thin Cu metal film deposited on a base layer of TiN and passivated with TiN or SiNx. The degradation of interface adhesion strength with temperature is modeled using an Andrade-type of relationship. The void growth rates characterized in these experiments are combined with the expression for void growth rate to estimate the interface adhesion strength for the Cu-TiN and Cu-SiNx interfaces. The methodology for estimating the adhesion strength of the metal-passivation layer interface is validated through comparison with interface adhesion strengths from mechanical de-adhesion tests reported in literature.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-contact Method for Estimating Thin Metal Film Adhesion Strength through Current Induced Void Growth\",\"authors\":\"Sudarshan Prasad, Pavan Kumar Vaitheeswaran, Yuvraj Singh, Pei-En Chou, Huanyu Liao, Ganesh Subbarayan\",\"doi\":\"10.1115/1.4063948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Studies have reported that the electromigration induced void growth velocity in metal thin films is inversely related to the adhesion strength of the metal thin film with the base and passivation layers. It was also observed that the contribution of interface adhesion strength to electromigration resistance decreases with increase in temperature. In this study an expression is derived for the diffusive void growth velocity induced by electromigration from a generalized thermodynamically consistent continuum-based theory for reaction-diffusion driven solid state interface evolution. This relation captures the effect of adhesion with the base and passivation layers on electromigration resistance of thin metal films. Electromigration experiments were carried out at elevated temperatures and high current density to induce voiding in thin Cu metal film deposited on a base layer of TiN and passivated with TiN or SiNx. The degradation of interface adhesion strength with temperature is modeled using an Andrade-type of relationship. The void growth rates characterized in these experiments are combined with the expression for void growth rate to estimate the interface adhesion strength for the Cu-TiN and Cu-SiNx interfaces. The methodology for estimating the adhesion strength of the metal-passivation layer interface is validated through comparison with interface adhesion strengths from mechanical de-adhesion tests reported in literature.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063948\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063948","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
A Non-contact Method for Estimating Thin Metal Film Adhesion Strength through Current Induced Void Growth
Abstract Studies have reported that the electromigration induced void growth velocity in metal thin films is inversely related to the adhesion strength of the metal thin film with the base and passivation layers. It was also observed that the contribution of interface adhesion strength to electromigration resistance decreases with increase in temperature. In this study an expression is derived for the diffusive void growth velocity induced by electromigration from a generalized thermodynamically consistent continuum-based theory for reaction-diffusion driven solid state interface evolution. This relation captures the effect of adhesion with the base and passivation layers on electromigration resistance of thin metal films. Electromigration experiments were carried out at elevated temperatures and high current density to induce voiding in thin Cu metal film deposited on a base layer of TiN and passivated with TiN or SiNx. The degradation of interface adhesion strength with temperature is modeled using an Andrade-type of relationship. The void growth rates characterized in these experiments are combined with the expression for void growth rate to estimate the interface adhesion strength for the Cu-TiN and Cu-SiNx interfaces. The methodology for estimating the adhesion strength of the metal-passivation layer interface is validated through comparison with interface adhesion strengths from mechanical de-adhesion tests reported in literature.
期刊介绍:
All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation